Disaggregating Train Delays into Primary and Secondary Components using Gated Graph Convolutional Networks⁎

Q3 Engineering
Maximilian Viehauser , Martin Bicher , Matthias Rößler , Niki Popper
{"title":"Disaggregating Train Delays into Primary and Secondary Components using Gated Graph Convolutional Networks⁎","authors":"Maximilian Viehauser ,&nbsp;Martin Bicher ,&nbsp;Matthias Rößler ,&nbsp;Niki Popper","doi":"10.1016/j.ifacol.2025.03.075","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel approach for disaggregating aggregated train delays into primary and secondary components using Gated Graph Convolutional Networks (GatedGCNs). We develop a graph-based representation of railway traffic that captures complex spatiotemporal relationships and long-range dependencies. Our method is applied to synthetic delay data generated from an agent-based simulation model of the Austrian railway network. We evaluate the model on classification and regression tasks, demonstrating high accuracy in distinguishing between primary and secondary delays. The classification task achieves 96% accuracy and 0.99 AUC, while the regression task attains an R-squared value of 0.86. These results significantly outperform a naive baseline model. The findings suggest that GatedGCN is a promising method for delay disaggregation and has potential for broader applications in capturing delay propagation processes. However, while the results on synthetic data demonstrate strong performance, further validation on real-world data is essential to confirm its practical applicability.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 1","pages":"Pages 439-444"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325002927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel approach for disaggregating aggregated train delays into primary and secondary components using Gated Graph Convolutional Networks (GatedGCNs). We develop a graph-based representation of railway traffic that captures complex spatiotemporal relationships and long-range dependencies. Our method is applied to synthetic delay data generated from an agent-based simulation model of the Austrian railway network. We evaluate the model on classification and regression tasks, demonstrating high accuracy in distinguishing between primary and secondary delays. The classification task achieves 96% accuracy and 0.99 AUC, while the regression task attains an R-squared value of 0.86. These results significantly outperform a naive baseline model. The findings suggest that GatedGCN is a promising method for delay disaggregation and has potential for broader applications in capturing delay propagation processes. However, while the results on synthetic data demonstrate strong performance, further validation on real-world data is essential to confirm its practical applicability.
利用门控图卷积网络将列车延迟分解为主要和次要组成部分⁎
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信