Xingfu Yan , Jiaju Ding , Fucai Luo , Zheng Gong , Wing W.Y. Ng , Yiyuan Luo
{"title":"PP-MAD: Privacy-preserving multi-task data aggregation in mobile crowdsensing via blockchain","authors":"Xingfu Yan , Jiaju Ding , Fucai Luo , Zheng Gong , Wing W.Y. Ng , Yiyuan Luo","doi":"10.1016/j.csi.2025.104002","DOIUrl":null,"url":null,"abstract":"<div><div>In smart city, multi-task data aggregation has become a key method for extracting useful information from massive sensing data generated by concurrent mobile crowdsensing tasks from multiple task requesters. In such multi-requester and multi-task scenario, each task requester wants to protect the privacy of their own aggregation results. Thus, protecting privacies of both workers and task requesters pose a significant challenge for multi-task data aggregation. Most existing privacy-preserving data aggregation methods focus on single-requester scenarios. When applied to multi-task and multi-requester aggregation, existing methods are inefficient due to completing repeatedly each task and fail to safeguard the privacy of each task requester. Additionally, existing multi-task data aggregation schemes do not support multiple types of aggregation. To tackle these challenges, we propose PP-MAD, a multi-type and privacy-preserving multi-task data aggregation scheme based on blockchain for mobile crowdsensing. PP-MAD is able to aggregate multiple concurrent tasks from multiple task requesters, and it supports many types of data aggregation, including sum, mean, variance, weighted sum, weighted mean. Moreover, PP-MAD ensures privacies of workers’ data and aggregation results of each task requester, even under collusion attacks. A detailed security analysis verifies that PP-MAD is both secure and privacy-preserving. Furthermore, experimental results and theoretical analyses of both computation and communication costs demonstrate our scheme is efficient.</div></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"94 ","pages":"Article 104002"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548925000315","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In smart city, multi-task data aggregation has become a key method for extracting useful information from massive sensing data generated by concurrent mobile crowdsensing tasks from multiple task requesters. In such multi-requester and multi-task scenario, each task requester wants to protect the privacy of their own aggregation results. Thus, protecting privacies of both workers and task requesters pose a significant challenge for multi-task data aggregation. Most existing privacy-preserving data aggregation methods focus on single-requester scenarios. When applied to multi-task and multi-requester aggregation, existing methods are inefficient due to completing repeatedly each task and fail to safeguard the privacy of each task requester. Additionally, existing multi-task data aggregation schemes do not support multiple types of aggregation. To tackle these challenges, we propose PP-MAD, a multi-type and privacy-preserving multi-task data aggregation scheme based on blockchain for mobile crowdsensing. PP-MAD is able to aggregate multiple concurrent tasks from multiple task requesters, and it supports many types of data aggregation, including sum, mean, variance, weighted sum, weighted mean. Moreover, PP-MAD ensures privacies of workers’ data and aggregation results of each task requester, even under collusion attacks. A detailed security analysis verifies that PP-MAD is both secure and privacy-preserving. Furthermore, experimental results and theoretical analyses of both computation and communication costs demonstrate our scheme is efficient.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.