Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang
{"title":"Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions","authors":"Haiyu Zhu ,&nbsp;Zhuoqun Wen ,&nbsp;Wen Xiong ,&nbsp;Xingzhan Wei ,&nbsp;Zhi Wang","doi":"10.1016/j.actphy.2025.100078","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate prediction of the Schottky barrier height (SBH) holds significant importance for optimizing the performance of semimetal/semiconductor heterojunction devices. Two-dimensional semimetal/semiconductor heterostructures have now been extensively studied experimentally. However, first-principles predictions of the corresponding SBH typically require solving the ab initio Hamiltonian in supercells containing more than 10<sup>3</sup> atoms. This high computational complexity not only results in extremely low efficiency but also hinders the design and optimization of heterojunction devices. Herein, we apply density functional theory with a core-level energy alignment method for transition-metal-ditelluride semimetal/silicon junctions, which enables a reduction in supercell size by one order of magnitude. The predicted SBHs show excellent agreement with experiment. We further investigate different 2D semimetal compounds, finding that all candidates exhibit lower SBHs for holes than electrons, with thickness effects becoming negligible beyond three to five layers. This study presents an efficient framework for calculating SBH in complex heterostructures and provides theoretical guidance for the efficient design of high-performance 2D semimetal heterojunction devices.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 7","pages":"Article 100078"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000347","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate prediction of the Schottky barrier height (SBH) holds significant importance for optimizing the performance of semimetal/semiconductor heterojunction devices. Two-dimensional semimetal/semiconductor heterostructures have now been extensively studied experimentally. However, first-principles predictions of the corresponding SBH typically require solving the ab initio Hamiltonian in supercells containing more than 103 atoms. This high computational complexity not only results in extremely low efficiency but also hinders the design and optimization of heterojunction devices. Herein, we apply density functional theory with a core-level energy alignment method for transition-metal-ditelluride semimetal/silicon junctions, which enables a reduction in supercell size by one order of magnitude. The predicted SBHs show excellent agreement with experiment. We further investigate different 2D semimetal compounds, finding that all candidates exhibit lower SBHs for holes than electrons, with thickness effects becoming negligible beyond three to five layers. This study presents an efficient framework for calculating SBH in complex heterostructures and provides theoretical guidance for the efficient design of high-performance 2D semimetal heterojunction devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信