{"title":"Decadal drought prediction via spectral transformation of projected Sea Surface Temperatures","authors":"Ze Jiang, Ashish Sharma","doi":"10.1016/j.hydroa.2025.100203","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge of impending drought can help significantly with water planning and management. This study introduces a novel forecasting framework for decadal drought projection which relies on climate model projections of Sea Surface Temperature Anomaly (SSTA) indices over the next decade and a spectral transformation methodology to maximise forecast skill. Decadal SSTA projections from the Decadal Climate Prediction Project (DCPP) undergo spectral transformation using Wavelet System Prediction (WASP). WASP modulates the frequency spectrum of predictor variables to better mimic the response spectrum of drought indices. The transformed SSTA indices are then used in a multiple linear regression (MLR) model to forecast drought indices across multiple time scales. This framework significantly improves drought forecasting skills, especially for lead times exceeding 24 months. While demonstrated for Australia, the MLR-WASP framework is transferable to other regions, offering a reliable tool for long-term water resource management by projecting drought risk over the coming decade. The implications of this research extend beyond hydroclimatology, impacting environmental science and engineering, sustainable planning, and adaptation efforts to climate change.</div></div><div><h3>Plain language summary</h3><div>Projecting drought risk over the next decade is essential for effective long-term water resources management. This study presents a new framework that reliably projects drought conditions up to 10 years ahead by optimizing decadal climate model data. It uses a spectral transformation technique to adjust predictors like Sea Surface Temperature Anomalies to better match drought patterns. These transformed predictors are then integrated into a regression model to forecast drought indices. When applied to Australia, this approach significantly outperformed existing methods, especially for 2-year forecasts. By combining advanced climate predictions with prediction-oriented data transformation, this framework enables reliable drought risk projections a decade out, offering invaluable insights for proactive planning in drought-prone regions worldwide.</div></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"27 ","pages":"Article 100203"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915525000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge of impending drought can help significantly with water planning and management. This study introduces a novel forecasting framework for decadal drought projection which relies on climate model projections of Sea Surface Temperature Anomaly (SSTA) indices over the next decade and a spectral transformation methodology to maximise forecast skill. Decadal SSTA projections from the Decadal Climate Prediction Project (DCPP) undergo spectral transformation using Wavelet System Prediction (WASP). WASP modulates the frequency spectrum of predictor variables to better mimic the response spectrum of drought indices. The transformed SSTA indices are then used in a multiple linear regression (MLR) model to forecast drought indices across multiple time scales. This framework significantly improves drought forecasting skills, especially for lead times exceeding 24 months. While demonstrated for Australia, the MLR-WASP framework is transferable to other regions, offering a reliable tool for long-term water resource management by projecting drought risk over the coming decade. The implications of this research extend beyond hydroclimatology, impacting environmental science and engineering, sustainable planning, and adaptation efforts to climate change.
Plain language summary
Projecting drought risk over the next decade is essential for effective long-term water resources management. This study presents a new framework that reliably projects drought conditions up to 10 years ahead by optimizing decadal climate model data. It uses a spectral transformation technique to adjust predictors like Sea Surface Temperature Anomalies to better match drought patterns. These transformed predictors are then integrated into a regression model to forecast drought indices. When applied to Australia, this approach significantly outperformed existing methods, especially for 2-year forecasts. By combining advanced climate predictions with prediction-oriented data transformation, this framework enables reliable drought risk projections a decade out, offering invaluable insights for proactive planning in drought-prone regions worldwide.