Decadal drought prediction via spectral transformation of projected Sea Surface Temperatures

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Ze Jiang, Ashish Sharma
{"title":"Decadal drought prediction via spectral transformation of projected Sea Surface Temperatures","authors":"Ze Jiang,&nbsp;Ashish Sharma","doi":"10.1016/j.hydroa.2025.100203","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge of impending drought can help significantly with water planning and management. This study introduces a novel forecasting framework for decadal drought projection which relies on climate model projections of Sea Surface Temperature Anomaly (SSTA) indices over the next decade and a spectral transformation methodology to maximise forecast skill. Decadal SSTA projections from the Decadal Climate Prediction Project (DCPP) undergo spectral transformation using Wavelet System Prediction (WASP). WASP modulates the frequency spectrum of predictor variables to better mimic the response spectrum of drought indices. The transformed SSTA indices are then used in a multiple linear regression (MLR) model to forecast drought indices across multiple time scales. This framework significantly improves drought forecasting skills, especially for lead times exceeding 24 months. While demonstrated for Australia, the MLR-WASP framework is transferable to other regions, offering a reliable tool for long-term water resource management by projecting drought risk over the coming decade. The implications of this research extend beyond hydroclimatology, impacting environmental science and engineering, sustainable planning, and adaptation efforts to climate change.</div></div><div><h3>Plain language summary</h3><div>Projecting drought risk over the next decade is essential for effective long-term water resources management. This study presents a new framework that reliably projects drought conditions up to 10 years ahead by optimizing decadal climate model data. It uses a spectral transformation technique to adjust predictors like Sea Surface Temperature Anomalies to better match drought patterns. These transformed predictors are then integrated into a regression model to forecast drought indices. When applied to Australia, this approach significantly outperformed existing methods, especially for 2-year forecasts. By combining advanced climate predictions with prediction-oriented data transformation, this framework enables reliable drought risk projections a decade out, offering invaluable insights for proactive planning in drought-prone regions worldwide.</div></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"27 ","pages":"Article 100203"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915525000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge of impending drought can help significantly with water planning and management. This study introduces a novel forecasting framework for decadal drought projection which relies on climate model projections of Sea Surface Temperature Anomaly (SSTA) indices over the next decade and a spectral transformation methodology to maximise forecast skill. Decadal SSTA projections from the Decadal Climate Prediction Project (DCPP) undergo spectral transformation using Wavelet System Prediction (WASP). WASP modulates the frequency spectrum of predictor variables to better mimic the response spectrum of drought indices. The transformed SSTA indices are then used in a multiple linear regression (MLR) model to forecast drought indices across multiple time scales. This framework significantly improves drought forecasting skills, especially for lead times exceeding 24 months. While demonstrated for Australia, the MLR-WASP framework is transferable to other regions, offering a reliable tool for long-term water resource management by projecting drought risk over the coming decade. The implications of this research extend beyond hydroclimatology, impacting environmental science and engineering, sustainable planning, and adaptation efforts to climate change.

Plain language summary

Projecting drought risk over the next decade is essential for effective long-term water resources management. This study presents a new framework that reliably projects drought conditions up to 10 years ahead by optimizing decadal climate model data. It uses a spectral transformation technique to adjust predictors like Sea Surface Temperature Anomalies to better match drought patterns. These transformed predictors are then integrated into a regression model to forecast drought indices. When applied to Australia, this approach significantly outperformed existing methods, especially for 2-year forecasts. By combining advanced climate predictions with prediction-oriented data transformation, this framework enables reliable drought risk projections a decade out, offering invaluable insights for proactive planning in drought-prone regions worldwide.

Abstract Image

通过预测海面温度的光谱变换进行十年干旱预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信