Molecular Structure Refinement of a ß-Heptapeptide Based on Residual Dipolar Couplings: The Challenge of Extracting Structural Information from Measured RDCs

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Maria Pechlaner*, Wilfred F. van Gunsteren, Lorna J. Smith and Niels Hansen, 
{"title":"Molecular Structure Refinement of a ß-Heptapeptide Based on Residual Dipolar Couplings: The Challenge of Extracting Structural Information from Measured RDCs","authors":"Maria Pechlaner*,&nbsp;Wilfred F. van Gunsteren,&nbsp;Lorna J. Smith and Niels Hansen,&nbsp;","doi":"10.1021/acs.jpcb.4c0695510.1021/acs.jpcb.4c06955","DOIUrl":null,"url":null,"abstract":"<p >The experimental determination of residual dipolar couplings (RDCs) rests on sampling the rotational motion of a molecule in an environment that induces a slightly nonuniform, unfortunately immeasurable, orientation distribution of the molecule in solution. Averaging over this slightly nonuniform, anisotropic distribution reduces the size of the dipolar couplings (DCs) from the kHz range to the Hz range for the resulting RDCs by a factor of 10<sup>3</sup> to 10<sup>4</sup>. These features hamper the use of measured RDCs to contribute to the structure determination or refinement of (bio)molecules. The commonly used alignment-tensor (<i>AT</i>) methodology assumes that the immeasurable, unknown orientation distribution of the molecule can be expressed in terms of five spherical harmonic functions of order 2. Staying close to experiment, RDCs can, alternatively, be calculated from a molecular simulation by sampling the rotational motion of the molecule (<i>MRS</i> method) or, instead, of a vector (<i>mfv</i>) representing the magnetic field (<i>HRS</i> method). The <i>AT</i> and <i>HRS</i> methods were applied to a β-heptapeptide solvated in methanol, for which 131 NOE atom–atom distance upper bounds and 21 <sup><i>3</i></sup><i>J</i>-couplings derived from NMR experiments are available and, in addition, 39 RDC values obtained for the molecule solvated in methanol with polyvinyl acetate added. In methanol at room temperature and pressure, the molecule adopts a relatively stable helical fold. It appears that MD simulation of the molecule in methanol using the GROMOS biomolecular force field already satisfies virtually all experimental data. Application of RDC restraining shows the limitations caused by the assumptions on which the <i>AT</i> and <i>HRS</i> methods rest and suggests that experimentally measured RDCs are less useful for molecular structure determination or refinement than other observable quantities that can be measured by NMR techniques. The results illustrate that in structure determination or refinement of a (bio)molecule based on experimentally measured data, it is mandatory (i) to refrain from the vacuum boundary condition and (ii) from torsional-angle restraints that do not account for the multiplicity of the inverse function of the Karplus relation expressing <sup>3</sup><i>J</i>-couplings in terms of molecular torsional angles, (iii) to allow for Boltzmann-weighted time- or molecule-averaging and, not the least, (iv) to use a force field that has an adequate basis in thermodynamic data of biomolecules.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 12","pages":"3131–3158 3131–3158"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcb.4c06955","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c06955","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The experimental determination of residual dipolar couplings (RDCs) rests on sampling the rotational motion of a molecule in an environment that induces a slightly nonuniform, unfortunately immeasurable, orientation distribution of the molecule in solution. Averaging over this slightly nonuniform, anisotropic distribution reduces the size of the dipolar couplings (DCs) from the kHz range to the Hz range for the resulting RDCs by a factor of 103 to 104. These features hamper the use of measured RDCs to contribute to the structure determination or refinement of (bio)molecules. The commonly used alignment-tensor (AT) methodology assumes that the immeasurable, unknown orientation distribution of the molecule can be expressed in terms of five spherical harmonic functions of order 2. Staying close to experiment, RDCs can, alternatively, be calculated from a molecular simulation by sampling the rotational motion of the molecule (MRS method) or, instead, of a vector (mfv) representing the magnetic field (HRS method). The AT and HRS methods were applied to a β-heptapeptide solvated in methanol, for which 131 NOE atom–atom distance upper bounds and 21 3J-couplings derived from NMR experiments are available and, in addition, 39 RDC values obtained for the molecule solvated in methanol with polyvinyl acetate added. In methanol at room temperature and pressure, the molecule adopts a relatively stable helical fold. It appears that MD simulation of the molecule in methanol using the GROMOS biomolecular force field already satisfies virtually all experimental data. Application of RDC restraining shows the limitations caused by the assumptions on which the AT and HRS methods rest and suggests that experimentally measured RDCs are less useful for molecular structure determination or refinement than other observable quantities that can be measured by NMR techniques. The results illustrate that in structure determination or refinement of a (bio)molecule based on experimentally measured data, it is mandatory (i) to refrain from the vacuum boundary condition and (ii) from torsional-angle restraints that do not account for the multiplicity of the inverse function of the Karplus relation expressing 3J-couplings in terms of molecular torsional angles, (iii) to allow for Boltzmann-weighted time- or molecule-averaging and, not the least, (iv) to use a force field that has an adequate basis in thermodynamic data of biomolecules.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信