TRIM21-driven K63-linked ubiquitination of RBM38c, as a novel interactor of BECN1, contributes to DNA damage-induced autophagy

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lishenglan Xia, Yusheng Xing, Xinjia Ye, Yuanshun Wu, Ying Yang, Ziyi Yin, Anni Wang, Jian Chen, Min Zhang
{"title":"TRIM21-driven K63-linked ubiquitination of RBM38c, as a novel interactor of BECN1, contributes to DNA damage-induced autophagy","authors":"Lishenglan Xia, Yusheng Xing, Xinjia Ye, Yuanshun Wu, Ying Yang, Ziyi Yin, Anni Wang, Jian Chen, Min Zhang","doi":"10.1038/s41418-025-01480-0","DOIUrl":null,"url":null,"abstract":"<p>Autophagy is essential in DNA damage response by limiting damage, but its responsive activation remains unclear. RBM38 (RBM38a), an RNA-binding protein, regulates mRNA metabolism and plays a key role in controlling cell cycle progression, senescence, and cancer. In this study, we uncovered a novel primate-specific isoform, RBM38c, with 32 extra amino acids from exon 2, which imparts a distinct capacity to promote autophagy upon DNA damage. TP53 increases RBM38c expression upon DNA damage, while TRIM21 facilitates its K63-linked ubiquitination at lysine (K) 35. Activated RBM38c enhances its interaction with BECN1, promoting the formation of the ATG14-containing PtdIns3K-C1 complex and thus autophagy initiation. A K35R mutation or TRIM21 deficiency impairs RBM38c ubiquitination, preventing autophagy activation upon DNA damage. Moreover, RBM38c-driven autophagy protects cells from DNA damage-induced apoptosis and promotes survival, with this beneficial effect susceptible to suppression by the autophagy inhibitor 3-methyladenine. Consequently, depleting RBM38c enhances the efficacy of DNA-damaging drugs by impairing autophagy and increasing DNA damage. Clinical lung cancer samples show a positive correlation between RBM38c expression and LC3 expression, and this correlation is linked to chemotherapy resistance. Together, our study reveals a novel mechanism for DNA damage-induced autophagy, involving K63-linked ubiquitination of RBM38c as a critical interactor with BECN1.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"41 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01480-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagy is essential in DNA damage response by limiting damage, but its responsive activation remains unclear. RBM38 (RBM38a), an RNA-binding protein, regulates mRNA metabolism and plays a key role in controlling cell cycle progression, senescence, and cancer. In this study, we uncovered a novel primate-specific isoform, RBM38c, with 32 extra amino acids from exon 2, which imparts a distinct capacity to promote autophagy upon DNA damage. TP53 increases RBM38c expression upon DNA damage, while TRIM21 facilitates its K63-linked ubiquitination at lysine (K) 35. Activated RBM38c enhances its interaction with BECN1, promoting the formation of the ATG14-containing PtdIns3K-C1 complex and thus autophagy initiation. A K35R mutation or TRIM21 deficiency impairs RBM38c ubiquitination, preventing autophagy activation upon DNA damage. Moreover, RBM38c-driven autophagy protects cells from DNA damage-induced apoptosis and promotes survival, with this beneficial effect susceptible to suppression by the autophagy inhibitor 3-methyladenine. Consequently, depleting RBM38c enhances the efficacy of DNA-damaging drugs by impairing autophagy and increasing DNA damage. Clinical lung cancer samples show a positive correlation between RBM38c expression and LC3 expression, and this correlation is linked to chemotherapy resistance. Together, our study reveals a novel mechanism for DNA damage-induced autophagy, involving K63-linked ubiquitination of RBM38c as a critical interactor with BECN1.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信