{"title":"Stochastic heat equation driven by space-only fractional Lévy noise","authors":"Lamine Salem, Mounir Zili","doi":"10.1007/s13540-025-00389-2","DOIUrl":null,"url":null,"abstract":"<p>We introduce a novel class of stochastic partial differential equations (SPDEs) driven by space-only fractional Lévy noise. In contrast to the prevalent focus on space-time noise in the existing literature, our work explores the unique challenges and opportunities presented by purely spatial perturbations. We establish the existence and uniqueness of the solution to the stochastic heat equation by rigorously establishing the well-definedness and equivalence of mild and weak solution concepts, utilizing a blend of stochastic, deterministic, and fractional calculus techniques. Specifically, we derive explicit expressions for the covariance and variance functions, and characterize the solution’s law. These results constitute a first step towards a comprehensive understanding of SPDEs with space-only fractional Lévy noise.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"57 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00389-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a novel class of stochastic partial differential equations (SPDEs) driven by space-only fractional Lévy noise. In contrast to the prevalent focus on space-time noise in the existing literature, our work explores the unique challenges and opportunities presented by purely spatial perturbations. We establish the existence and uniqueness of the solution to the stochastic heat equation by rigorously establishing the well-definedness and equivalence of mild and weak solution concepts, utilizing a blend of stochastic, deterministic, and fractional calculus techniques. Specifically, we derive explicit expressions for the covariance and variance functions, and characterize the solution’s law. These results constitute a first step towards a comprehensive understanding of SPDEs with space-only fractional Lévy noise.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.