Inner–Outer Sheath Synergistic Shielding of Polysulfides in Asymmetric Solvent-Based Electrolytes for Stable Sodium–Sulfur Batteries

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weiqi Yao, Min-Hao Pai, Arumugam Manthiram
{"title":"Inner–Outer Sheath Synergistic Shielding of Polysulfides in Asymmetric Solvent-Based Electrolytes for Stable Sodium–Sulfur Batteries","authors":"Weiqi Yao, Min-Hao Pai, Arumugam Manthiram","doi":"10.1021/jacs.4c18374","DOIUrl":null,"url":null,"abstract":"Room-temperature sodium–sulfur (RT Na–S) batteries are garnering interest owing to their high theoretical energy density and low cost. However, the notorious shuttle behavior of sodium polysulfides (NaPS) and uncontrollable dendrite growth lead to the poor cycle stability of RT Na–S cells. In this work, we report the use of 1,2-dimethoxypropane (DMP) and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (TFTFE) as inner solvent and outer diluent, respectively, in a localized high-concentration electrolyte system. Impressively, the asymmetric DMP as the inner solvent, introduced to replace the conventional solvent 1,2-dimethoxyethane (DME), shields NaPS effectively from incorporation into the inner solvation structure due to the extra methyl groups in the molecular structure. Furthermore, the TFTFE diluent, which contains electron-withdrawing perfluoro segments (−CF<sub>3</sub>– and −CF<sub>2</sub>−), exhibits significantly low solvation power. Consequently, the outer sheath TFTFE diluent further minimizes NaPS dissolution, thereby enhancing the cycle stability. This inner–outer sheath synergistic effect leads to the formation of highly effective cathode-electrolyte interphase (CEI) and solid-electrolyte interphase (SEI) layers simultaneously, significantly alleviating the shuttle effect and reducing the side reactions between NaPS and sodium metal. Remarkably, the Na–S cells with the designed electrolyte present long-cycling reversibility with 530 mAh g<sup>–1</sup> over 600 cycles at a C/2 rate and a low capacity decay rate of 0.077% per cycle. This study provides a profound understanding of the electrolyte structure involving NaPS and offers a firm basis for the rational design of electrolytes for rechargeable metal–sulfur battery systems.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"86 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c18374","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Room-temperature sodium–sulfur (RT Na–S) batteries are garnering interest owing to their high theoretical energy density and low cost. However, the notorious shuttle behavior of sodium polysulfides (NaPS) and uncontrollable dendrite growth lead to the poor cycle stability of RT Na–S cells. In this work, we report the use of 1,2-dimethoxypropane (DMP) and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (TFTFE) as inner solvent and outer diluent, respectively, in a localized high-concentration electrolyte system. Impressively, the asymmetric DMP as the inner solvent, introduced to replace the conventional solvent 1,2-dimethoxyethane (DME), shields NaPS effectively from incorporation into the inner solvation structure due to the extra methyl groups in the molecular structure. Furthermore, the TFTFE diluent, which contains electron-withdrawing perfluoro segments (−CF3– and −CF2−), exhibits significantly low solvation power. Consequently, the outer sheath TFTFE diluent further minimizes NaPS dissolution, thereby enhancing the cycle stability. This inner–outer sheath synergistic effect leads to the formation of highly effective cathode-electrolyte interphase (CEI) and solid-electrolyte interphase (SEI) layers simultaneously, significantly alleviating the shuttle effect and reducing the side reactions between NaPS and sodium metal. Remarkably, the Na–S cells with the designed electrolyte present long-cycling reversibility with 530 mAh g–1 over 600 cycles at a C/2 rate and a low capacity decay rate of 0.077% per cycle. This study provides a profound understanding of the electrolyte structure involving NaPS and offers a firm basis for the rational design of electrolytes for rechargeable metal–sulfur battery systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信