Dissecting stellar populations with manifold learning

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
A. W. Neitzel, T. L. Campante, D. Bossini, A. Miglio
{"title":"Dissecting stellar populations with manifold learning","authors":"A. W. Neitzel, T. L. Campante, D. Bossini, A. Miglio","doi":"10.1051/0004-6361/202451718","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Different stellar populations may be identified through differences in chemical, kinematic, and chronological properties, suggesting the interplay of various physical mechanisms that led to their origin and subsequent evolution. As such, the identification of stellar populations is key for gaining an insight into the evolutionary history of the Milky Way. This task is complicated by the fact that stellar populations share a significant overlap in their chrono-chemo-kinematic properties, hindering efforts to identify and define stellar populations.<i>Aims.<i/> Our goal is to offer a novel and effective methodology that can provide a deeper insight into the nonlinear and nonparametric properties of the multidimensional physical parameters that define stellar populations.<i>Methods.<i/> For this purpose, we explore the ability of manifold learning to differentiate stellar populations with minimal assumptions about their number and nature. Manifold learning is an unsupervised machine learning technique that seeks to intelligently identify and disentangle manifolds hidden within the input data. To test this method, we make use of <i>Gaia<i/> DR3-like synthetic stellar samples generated from the FIRE-2 cosmological simulations. These represent red-giant stars constrained by asteroseismic data from TESS.<i>Results.<i/> We reduced the 5D input chrono-chemo-kinematic parameter space into 2D latent space embeddings generated by manifold learning. We then study these embeddings to assess how accurately they represent the original data and whether they contain meaningful information that can be used to discern stellar populations.<i>Conclusions.<i/> We conclude that manifold learning possesses promising abilities to differentiate stellar populations when considering realistic observational constraints.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"93 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451718","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Different stellar populations may be identified through differences in chemical, kinematic, and chronological properties, suggesting the interplay of various physical mechanisms that led to their origin and subsequent evolution. As such, the identification of stellar populations is key for gaining an insight into the evolutionary history of the Milky Way. This task is complicated by the fact that stellar populations share a significant overlap in their chrono-chemo-kinematic properties, hindering efforts to identify and define stellar populations.Aims. Our goal is to offer a novel and effective methodology that can provide a deeper insight into the nonlinear and nonparametric properties of the multidimensional physical parameters that define stellar populations.Methods. For this purpose, we explore the ability of manifold learning to differentiate stellar populations with minimal assumptions about their number and nature. Manifold learning is an unsupervised machine learning technique that seeks to intelligently identify and disentangle manifolds hidden within the input data. To test this method, we make use of Gaia DR3-like synthetic stellar samples generated from the FIRE-2 cosmological simulations. These represent red-giant stars constrained by asteroseismic data from TESS.Results. We reduced the 5D input chrono-chemo-kinematic parameter space into 2D latent space embeddings generated by manifold learning. We then study these embeddings to assess how accurately they represent the original data and whether they contain meaningful information that can be used to discern stellar populations.Conclusions. We conclude that manifold learning possesses promising abilities to differentiate stellar populations when considering realistic observational constraints.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信