{"title":"Dynamics of the Mixmaster universe in a non-commutative generalized uncertainty principle framework","authors":"Sebastiano Segreto and Giovanni Montani","doi":"10.1088/1475-7516/2025/03/061","DOIUrl":null,"url":null,"abstract":"In this work, we examine the dynamical aspects of the cosmological Mixmaster model within the framework of non-commutative generalized uncertainty principle (GUP) theories. The theory is formulated classically by introducing a well-defined symplectic form that differs from the ordinary one, thereby inducing a general deformation of the Poisson brackets describing a precise class of GUP theories. In this general setting, we first investigate the behavior of the Bianchi I and Bianchi II models using Misner variables. Then, we study the Bianchi IX model in the Mixmaster approximation, which is well-known for accurately reproducing the dynamics of the point-particle Universe approaching the cosmological singularity. We derive the corresponding Belinsky-Khalatnikov-Lifshitz (BKL) map and then, by selecting a specific GUP model associated with string theory, we explicitly investigate its resulting features shaped by the non-commutative GUP scheme. Our findings reveal that the chaotic and ergodic behavior typically observed in the standard BKL map, which characterizes the point-Universe's approach to the singularity, is replaced by quasi-periodic orbits in the parameter space of the theory. This corresponds to an oscillatory behavior of the Universe's scale factors, dependent on the initial conditions.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"103 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/061","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we examine the dynamical aspects of the cosmological Mixmaster model within the framework of non-commutative generalized uncertainty principle (GUP) theories. The theory is formulated classically by introducing a well-defined symplectic form that differs from the ordinary one, thereby inducing a general deformation of the Poisson brackets describing a precise class of GUP theories. In this general setting, we first investigate the behavior of the Bianchi I and Bianchi II models using Misner variables. Then, we study the Bianchi IX model in the Mixmaster approximation, which is well-known for accurately reproducing the dynamics of the point-particle Universe approaching the cosmological singularity. We derive the corresponding Belinsky-Khalatnikov-Lifshitz (BKL) map and then, by selecting a specific GUP model associated with string theory, we explicitly investigate its resulting features shaped by the non-commutative GUP scheme. Our findings reveal that the chaotic and ergodic behavior typically observed in the standard BKL map, which characterizes the point-Universe's approach to the singularity, is replaced by quasi-periodic orbits in the parameter space of the theory. This corresponds to an oscillatory behavior of the Universe's scale factors, dependent on the initial conditions.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.