Estimators for the cross-pairwise kSZ effect: forecasts for the dark energy and modified gravity parameters with Simons Observatory and CMB-S4

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Aritra Kumar Gon and Rishi Khatri
{"title":"Estimators for the cross-pairwise kSZ effect: forecasts for the dark energy and modified gravity parameters with Simons Observatory and CMB-S4","authors":"Aritra Kumar Gon and Rishi Khatri","doi":"10.1088/1475-7516/2025/03/060","DOIUrl":null,"url":null,"abstract":"We present and study a new cross-pairwise estimator to extract the kinetic Sunyaev Zeldovich (kSZ) signal from galaxy clusters. The existing pairwise kSZ method involves pairing clusters with other clusters and stacking them. In the cross-pairwise method, we propose to pair clusters with galaxies from a spectroscopic survey and then do the stacking. Cross-pairing decreases the measurement, instrumentation, and statistical noise, thus boosting the signal-to-noise ratio. However, we also need data from a galaxy survey in addition to the CMB temperature maps and a cluster catalog in order to use this method. We do a Fisher matrix analysis for the optimised pairwise and cross-pairwise estimators and forecast the ability of future Cosmic Microwave Background (CMB) experiments and galaxy surveys to measure cosmological parameters with the kSZ effect when combined with primary CMB and Baryon Acoustic Oscillation (BAO) data. We show that using the cross-pairwise kSZ estimator leads to a factor of 2(3) improvement in the 1σ error of the dark energy parameters w0 and wa and a factor of 4(6) improvement for the growth rate index γ compared to the pairwise estimator, when we pair the clusters from the Simons Observatory (CMB-S4) with the galaxies from the DESI survey.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"34 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/060","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present and study a new cross-pairwise estimator to extract the kinetic Sunyaev Zeldovich (kSZ) signal from galaxy clusters. The existing pairwise kSZ method involves pairing clusters with other clusters and stacking them. In the cross-pairwise method, we propose to pair clusters with galaxies from a spectroscopic survey and then do the stacking. Cross-pairing decreases the measurement, instrumentation, and statistical noise, thus boosting the signal-to-noise ratio. However, we also need data from a galaxy survey in addition to the CMB temperature maps and a cluster catalog in order to use this method. We do a Fisher matrix analysis for the optimised pairwise and cross-pairwise estimators and forecast the ability of future Cosmic Microwave Background (CMB) experiments and galaxy surveys to measure cosmological parameters with the kSZ effect when combined with primary CMB and Baryon Acoustic Oscillation (BAO) data. We show that using the cross-pairwise kSZ estimator leads to a factor of 2(3) improvement in the 1σ error of the dark energy parameters w0 and wa and a factor of 4(6) improvement for the growth rate index γ compared to the pairwise estimator, when we pair the clusters from the Simons Observatory (CMB-S4) with the galaxies from the DESI survey.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信