Data-driven approaches for predicting mechanical properties and determining processing parameters of selective laser sintered nylon-12 components.

Discover mechanical engineering Pub Date : 2025-01-01 Epub Date: 2025-03-22 DOI:10.1007/s44245-025-00094-7
Ruixuan Tu, Candice Majewski, Inna Gitman
{"title":"Data-driven approaches for predicting mechanical properties and determining processing parameters of selective laser sintered nylon-12 components.","authors":"Ruixuan Tu, Candice Majewski, Inna Gitman","doi":"10.1007/s44245-025-00094-7","DOIUrl":null,"url":null,"abstract":"<p><p>In order to allow engineers to make decisions regarding laser settings in selective laser sintering and predict the mechanical properties of materials, conventional material models could provide accurate solutions and recommendations, however, they are potentially expensive and time-consuming. Thus, a number of computational data-driven methodologies have been introduced in this article, as alternatives, to formulate cross-correlations between the processing parameters and mechanical properties of selective laser sintered (SLS) nylon-12 components. Proposed in this article <i>direct</i>-from laser settings to material properties, and <i>inverse</i>-from desired material properties to laser settings, two estimation frameworks have provided accurate estimation results. The accuracy of three proposed data-driven methodologies: fuzzy inference system (FIS), artificial neural networks (ANN) and adaptive neural fuzzy inference system (ANFIS), have been compared and thoroughly analysed, with FIS being the most accurate solution.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44245-025-00094-7.</p>","PeriodicalId":101405,"journal":{"name":"Discover mechanical engineering","volume":"4 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover mechanical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44245-025-00094-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to allow engineers to make decisions regarding laser settings in selective laser sintering and predict the mechanical properties of materials, conventional material models could provide accurate solutions and recommendations, however, they are potentially expensive and time-consuming. Thus, a number of computational data-driven methodologies have been introduced in this article, as alternatives, to formulate cross-correlations between the processing parameters and mechanical properties of selective laser sintered (SLS) nylon-12 components. Proposed in this article direct-from laser settings to material properties, and inverse-from desired material properties to laser settings, two estimation frameworks have provided accurate estimation results. The accuracy of three proposed data-driven methodologies: fuzzy inference system (FIS), artificial neural networks (ANN) and adaptive neural fuzzy inference system (ANFIS), have been compared and thoroughly analysed, with FIS being the most accurate solution.

Supplementary information: The online version contains supplementary material available at 10.1007/s44245-025-00094-7.

选择性激光烧结尼龙-12构件力学性能预测和工艺参数确定的数据驱动方法。
为了让工程师在选择性激光烧结中对激光设置做出决定,并预测材料的机械性能,传统的材料模型可以提供准确的解决方案和建议,然而,它们可能昂贵且耗时。因此,本文介绍了许多计算数据驱动的方法,作为替代方案,以制定选择性激光烧结(SLS)尼龙-12组件的加工参数和机械性能之间的相互关系。本文提出了直接从激光设置到材料性能,以及反向从所需材料性能到激光设置的两种估计框架,提供了准确的估计结果。本文对三种数据驱动方法:模糊推理系统(FIS)、人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)的精度进行了比较和深入分析,其中FIS是最准确的解决方案。补充信息:在线版本包含补充资料,提供地址为10.1007/s44245-025-00094-7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信