Machine learning image-based analysis for bead geometry prediction in fused granulate fabrication for large format additive manufacturing.

npj Advanced Manufacturing Pub Date : 2025-01-01 Epub Date: 2025-03-18 DOI:10.1038/s44334-025-00018-z
Daniele Vanerio, Mario Guagliano, Sara Bagherifard
{"title":"Machine learning image-based analysis for bead geometry prediction in fused granulate fabrication for large format additive manufacturing.","authors":"Daniele Vanerio, Mario Guagliano, Sara Bagherifard","doi":"10.1038/s44334-025-00018-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates an artificial neural network (ANN) for predicting cross-sectional geometry in fused granulate fabrication (FGF), a key polymer-based technology in large-format additive manufacturing (LFAM). Critical process parameters-layer height, transverse speed, and screw speed-were systematically varied to study their effects on bead morphology. A full factorial design generated a robust training dataset, and cross-sectional images were processed for model training. The ANN architecture, featuring two hidden layers, was paired with image processing techniques to manage computational demands. Results showed strong agreement between predicted and experimental cross-sections, with a mean absolute error of 8.88%, highlighting the ANN's capability in capturing geometry. This approach advances prior LFAM studies by predicting full cross-sectional images rather than contour points, improving complex shape prediction. The findings demonstrate the ANN's effectiveness for FGF profiles and its potential to enhance geometric precision and generate complex shapes across LFAM technologies.</p>","PeriodicalId":501702,"journal":{"name":"npj Advanced Manufacturing","volume":"2 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44334-025-00018-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates an artificial neural network (ANN) for predicting cross-sectional geometry in fused granulate fabrication (FGF), a key polymer-based technology in large-format additive manufacturing (LFAM). Critical process parameters-layer height, transverse speed, and screw speed-were systematically varied to study their effects on bead morphology. A full factorial design generated a robust training dataset, and cross-sectional images were processed for model training. The ANN architecture, featuring two hidden layers, was paired with image processing techniques to manage computational demands. Results showed strong agreement between predicted and experimental cross-sections, with a mean absolute error of 8.88%, highlighting the ANN's capability in capturing geometry. This approach advances prior LFAM studies by predicting full cross-sectional images rather than contour points, improving complex shape prediction. The findings demonstrate the ANN's effectiveness for FGF profiles and its potential to enhance geometric precision and generate complex shapes across LFAM technologies.

基于机器学习图像的大幅面增材制造熔融颗粒加工中磁珠几何形状预测分析。
本文研究了一种用于预测熔融颗粒制造(FGF)截面几何形状的人工神经网络(ANN),熔融颗粒制造是大尺寸增材制造(LFAM)中基于聚合物的关键技术。系统地改变了关键工艺参数——层高、横向速度和螺杆速度,研究了它们对球团形貌的影响。全因子设计生成稳健的训练数据集,并对横截面图像进行处理以进行模型训练。具有两个隐藏层的人工神经网络架构与图像处理技术相结合,以管理计算需求。结果表明,预测截面与实验截面高度吻合,平均绝对误差为8.88%,突出了人工神经网络捕获几何形状的能力。该方法通过预测全横截面图像而不是轮廓点来推进先前的LFAM研究,改善了复杂形状的预测。研究结果证明了人工神经网络对FGF轮廓的有效性,以及它在提高几何精度和跨LFAM技术生成复杂形状方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信