A longitudinal observational study with ecological momentary assessment and deep learning to predict non-prescribed opioid use, treatment retention, and medication nonadherence among persons receiving medication treatment for opioid use disorder

0 PSYCHOLOGY, CLINICAL
Michael V. Heinz , George D. Price , Avijit Singh , Sukanya Bhattacharya , Ching-Hua Chen , Asma Asyyed , Monique B. Does , Saeed Hassanpour , Emily Hichborn , David Kotz , Chantal A. Lambert-Harris , Zhiguo Li , Bethany McLeman , Varun Mishra , Catherine Stanger , Geetha Subramaniam , Weiyi Wu , Cynthia I. Campbell , Lisa A. Marsch , Nicholas C. Jacobson
{"title":"A longitudinal observational study with ecological momentary assessment and deep learning to predict non-prescribed opioid use, treatment retention, and medication nonadherence among persons receiving medication treatment for opioid use disorder","authors":"Michael V. Heinz ,&nbsp;George D. Price ,&nbsp;Avijit Singh ,&nbsp;Sukanya Bhattacharya ,&nbsp;Ching-Hua Chen ,&nbsp;Asma Asyyed ,&nbsp;Monique B. Does ,&nbsp;Saeed Hassanpour ,&nbsp;Emily Hichborn ,&nbsp;David Kotz ,&nbsp;Chantal A. Lambert-Harris ,&nbsp;Zhiguo Li ,&nbsp;Bethany McLeman ,&nbsp;Varun Mishra ,&nbsp;Catherine Stanger ,&nbsp;Geetha Subramaniam ,&nbsp;Weiyi Wu ,&nbsp;Cynthia I. Campbell ,&nbsp;Lisa A. Marsch ,&nbsp;Nicholas C. Jacobson","doi":"10.1016/j.josat.2025.209685","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Despite effective treatments for opioid use disorder (OUD), relapse and treatment drop-out diminish their efficacy, increasing the risks of adverse outcomes, including death. Predicting important outcomes, including non-prescribed opioid use (NPOU) and treatment discontinuation among persons receiving medications for OUD (MOUD) can provide a proactive approach to these challenges. Our study uses ecological momentary assessment (EMA) and deep learning to predict momentary NPOU, medication nonadherence, and treatment retention in MOUD patients.</div></div><div><h3>Methods</h3><div>Study participants included adults receiving MOUD at a large outpatient treatment program. We predicted NPOU (EMA-based), medication nonadherence (Electronic Health Record [EHR]- and EMA-based), and treatment retention (EHR-based) using context-sensitive EMAs (e.g., stress, pain, social setting). We used recurrent deep learning models with 7-day sliding windows to predict the next-day outcomes, using Area Under the ROC Curve (AUC) for assessment. We employed SHapley additive ExPlanations (SHAP) to understand feature latency and importance.</div></div><div><h3>Results</h3><div>Participants comprised 62 adults with 14,322 observations. Model performance varied across EMA subtypes and outcomes with AUCs spanning 0.58–0.97. Recent substance use was the best performing predictor for EMA-based NPOU (AUC = 0.97). Life-contextual factors were best performers for EMA-based medication nonadherence (AUC = 0.68) and retention (AUC = 0.89), and substance use risk factors (e.g., nicotine and alcohol use) and self-reported MOUD adherence performed best for predicting EHR-based medication nonadherence (AUC = 0.79). SHAP revealed varying latencies between predictors and outcomes.</div></div><div><h3>Conclusions</h3><div>Findings support the effectiveness of EMA and deep learning for forecasting actionable outcomes in persons receiving MOUD. These insights will enable the development of personalized dynamic risk profiles and just-in-time adaptive interventions (JITAIs) to mitigate high-risk OUD outcomes.</div></div>","PeriodicalId":73960,"journal":{"name":"Journal of substance use and addiction treatment","volume":"173 ","pages":"Article 209685"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of substance use and addiction treatment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949875925000645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Despite effective treatments for opioid use disorder (OUD), relapse and treatment drop-out diminish their efficacy, increasing the risks of adverse outcomes, including death. Predicting important outcomes, including non-prescribed opioid use (NPOU) and treatment discontinuation among persons receiving medications for OUD (MOUD) can provide a proactive approach to these challenges. Our study uses ecological momentary assessment (EMA) and deep learning to predict momentary NPOU, medication nonadherence, and treatment retention in MOUD patients.

Methods

Study participants included adults receiving MOUD at a large outpatient treatment program. We predicted NPOU (EMA-based), medication nonadherence (Electronic Health Record [EHR]- and EMA-based), and treatment retention (EHR-based) using context-sensitive EMAs (e.g., stress, pain, social setting). We used recurrent deep learning models with 7-day sliding windows to predict the next-day outcomes, using Area Under the ROC Curve (AUC) for assessment. We employed SHapley additive ExPlanations (SHAP) to understand feature latency and importance.

Results

Participants comprised 62 adults with 14,322 observations. Model performance varied across EMA subtypes and outcomes with AUCs spanning 0.58–0.97. Recent substance use was the best performing predictor for EMA-based NPOU (AUC = 0.97). Life-contextual factors were best performers for EMA-based medication nonadherence (AUC = 0.68) and retention (AUC = 0.89), and substance use risk factors (e.g., nicotine and alcohol use) and self-reported MOUD adherence performed best for predicting EHR-based medication nonadherence (AUC = 0.79). SHAP revealed varying latencies between predictors and outcomes.

Conclusions

Findings support the effectiveness of EMA and deep learning for forecasting actionable outcomes in persons receiving MOUD. These insights will enable the development of personalized dynamic risk profiles and just-in-time adaptive interventions (JITAIs) to mitigate high-risk OUD outcomes.
一项纵向观察研究,利用生态瞬时评估和深度学习来预测接受阿片类药物使用障碍药物治疗的人的非处方阿片类药物使用、治疗保留和药物不依从性。
背景:尽管对阿片类药物使用障碍(OUD)进行了有效的治疗,但复发和治疗退出会降低其疗效,增加包括死亡在内的不良后果的风险。预测重要的结果,包括非处方阿片类药物使用(NPOU)和接受OUD药物治疗(mod)的人的治疗中断,可以为这些挑战提供积极的方法。我们的研究使用生态瞬时评估(EMA)和深度学习来预测mod患者的瞬时NPOU、药物不依从和治疗保留。方法:研究参与者包括在大型门诊治疗项目中接受mod治疗的成年人。我们使用情境敏感的EMAs(如压力、疼痛、社会环境)预测NPOU(基于ema)、药物不依从(基于电子健康记录[EHR]和基于ema)和治疗保留(基于EHR)。我们使用具有7天滑动窗口的循环深度学习模型来预测第二天的结果,使用ROC曲线下面积(AUC)进行评估。我们采用SHapley加性解释(SHAP)来理解特征延迟和重要性。结果:参与者包括62名成年人,14322项观察。模型表现因EMA亚型和结果而异,auc范围为0.58-0.97。近期药物使用是基于ema的NPOU的最佳预测指标(AUC = 0.97)。生活环境因素对基于ema的药物不依从(AUC = 0.68)和保留(AUC = 0.89)表现最佳,物质使用危险因素(如尼古丁和酒精使用)对预测基于ehr的药物不依从表现最佳(AUC = 0.79)。SHAP揭示了预测因子和结果之间的不同潜伏期。结论:研究结果支持EMA和深度学习在预测mod患者可操作结果方面的有效性。这些见解将有助于开发个性化的动态风险概况和及时适应性干预措施(JITAIs),以减轻高风险的OUD结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of substance use and addiction treatment
Journal of substance use and addiction treatment Biological Psychiatry, Neuroscience (General), Psychiatry and Mental Health, Psychology (General)
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信