Learning-aided Neighborhood Search for Vehicle Routing Problems.

Tong Guo, Yi Mei, Mengjie Zhang, Haoran Zhao, Kaiquan Cai, Wenbo Du
{"title":"Learning-aided Neighborhood Search for Vehicle Routing Problems.","authors":"Tong Guo, Yi Mei, Mengjie Zhang, Haoran Zhao, Kaiquan Cai, Wenbo Du","doi":"10.1109/TPAMI.2025.3554669","DOIUrl":null,"url":null,"abstract":"<p><p>The Vehicle Routing Problem (VRP) is a classic optimization problem with diverse real-world applications. The neighborhood search has emerged as an effective approach, yielding high-quality solutions across different VRPs. However, most existing studies exhaustively explore all considered neighborhoods with a pre-fixed order, leading to an inefficient search process. To address this issue, this paper proposes a Learning-aided Neighborhood Search algorithm (LaNS) that employs a cutting-edge multi-agent reinforcement learning-driven adaptive operator/neighborhood selection mechanism to achieve efficient routing for VRP. Within this framework, two agents serve as high-level instructors, collaboratively guiding the search direction by selecting perturbation/improvement operators from a pool of low-level heuristics. Furthermore, to equip the agents with comprehensive information for learning guidance knowledge, we have developed a new informative state representation. This representation transforms the spatial route structures into an image-like tensor, allowing us to extract spatial features using a convolutional neural network. Comprehensive evaluations on diverse VRP benchmarks, including the capacitated VRP (CVRP), multi-depot VRP (MDVRP) and cumulative multi-depot VRP with energy constraints, demonstrate LaNS's superiority over the state-of-the-art neighborhood search methods as well as the existing learning-guided neighborhood search algorithms.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3554669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Vehicle Routing Problem (VRP) is a classic optimization problem with diverse real-world applications. The neighborhood search has emerged as an effective approach, yielding high-quality solutions across different VRPs. However, most existing studies exhaustively explore all considered neighborhoods with a pre-fixed order, leading to an inefficient search process. To address this issue, this paper proposes a Learning-aided Neighborhood Search algorithm (LaNS) that employs a cutting-edge multi-agent reinforcement learning-driven adaptive operator/neighborhood selection mechanism to achieve efficient routing for VRP. Within this framework, two agents serve as high-level instructors, collaboratively guiding the search direction by selecting perturbation/improvement operators from a pool of low-level heuristics. Furthermore, to equip the agents with comprehensive information for learning guidance knowledge, we have developed a new informative state representation. This representation transforms the spatial route structures into an image-like tensor, allowing us to extract spatial features using a convolutional neural network. Comprehensive evaluations on diverse VRP benchmarks, including the capacitated VRP (CVRP), multi-depot VRP (MDVRP) and cumulative multi-depot VRP with energy constraints, demonstrate LaNS's superiority over the state-of-the-art neighborhood search methods as well as the existing learning-guided neighborhood search algorithms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信