Calibration-Free Raw Image Denoising via Fine-Grained Noise Estimation.

Yunhao Zou, Ying Fu, Yulun Zhang, Tao Zhang, Chenggang Yan, Radu Timofte
{"title":"Calibration-Free Raw Image Denoising via Fine-Grained Noise Estimation.","authors":"Yunhao Zou, Ying Fu, Yulun Zhang, Tao Zhang, Chenggang Yan, Radu Timofte","doi":"10.1109/TPAMI.2025.3550264","DOIUrl":null,"url":null,"abstract":"<p><p>Image denoising has progressed significantly due to the development of effective deep denoisers. To improve the performance in real-world scenarios, recent trends prefer to formulate superior noise models to generate realistic training data, or estimate noise levels to steer non-blind denoisers. In this paper, we bridge both strategies by presenting an innovative noise estimation and realistic noise synthesis pipeline. Specifically, we integrates a fine-grained statistical noise model and contrastive learning strategy, with a unique data augmentation to enhance learning ability. Then, we use this model to estimate noise parameters on evaluation dataset, which are subsequently used to craft camera-specific noise distribution and synthesize realistic noise. One distinguishing feature of our methodology is its adaptability: our pre-trained model can directly estimate unknown cameras, making it possible to unfamiliar sensor noise modeling using only testing images, without calibration frames or paired training data. Another highlight is our attempt in estimating parameters for fine-grained noise models, which extends the applicability to even more challenging low-light conditions. Through empirical testing, our calibration-free pipeline demonstrates effectiveness in both normal and low-light scenarios, further solidifying its utility in real-world noise synthesis and denoising tasks.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3550264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image denoising has progressed significantly due to the development of effective deep denoisers. To improve the performance in real-world scenarios, recent trends prefer to formulate superior noise models to generate realistic training data, or estimate noise levels to steer non-blind denoisers. In this paper, we bridge both strategies by presenting an innovative noise estimation and realistic noise synthesis pipeline. Specifically, we integrates a fine-grained statistical noise model and contrastive learning strategy, with a unique data augmentation to enhance learning ability. Then, we use this model to estimate noise parameters on evaluation dataset, which are subsequently used to craft camera-specific noise distribution and synthesize realistic noise. One distinguishing feature of our methodology is its adaptability: our pre-trained model can directly estimate unknown cameras, making it possible to unfamiliar sensor noise modeling using only testing images, without calibration frames or paired training data. Another highlight is our attempt in estimating parameters for fine-grained noise models, which extends the applicability to even more challenging low-light conditions. Through empirical testing, our calibration-free pipeline demonstrates effectiveness in both normal and low-light scenarios, further solidifying its utility in real-world noise synthesis and denoising tasks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信