Puzzling out the ecological niche construction for nitrogen fixers in a coastal upwelling system.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-02-04 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf018
Marcos Fontela, Daniel Fernández-Román, Esperanza Broullón, Hanna Farnelid, Ana Fernández-Carrera, Emilio Marañón, Sandra Martínez-García, Tamara Rodríguez-Ramos, Marta M Varela, Beatriz Mouriño-Carballido
{"title":"Puzzling out the ecological niche construction for nitrogen fixers in a coastal upwelling system.","authors":"Marcos Fontela, Daniel Fernández-Román, Esperanza Broullón, Hanna Farnelid, Ana Fernández-Carrera, Emilio Marañón, Sandra Martínez-García, Tamara Rodríguez-Ramos, Marta M Varela, Beatriz Mouriño-Carballido","doi":"10.1093/ismeco/ycaf018","DOIUrl":null,"url":null,"abstract":"<p><p>Diazotrophs are a diverse group of microorganisms that can fertilize the ocean through biological nitrogen fixation (BNF). Due to the high energetic cost of this process, diazotrophy in nitrogen-replete regions remains enigmatic. We use multidisciplinary observations to propose a novel framework for the ecological niche construction of nitrogen fixers in the upwelling region off NW Iberia-one of the most productive coastal regions in Europe-characterized by weak and intermittent wind-driven upwelling and the presence of bays. The main diazotroph detected (UCYN-A2) was more abundant and active during summer and early autumn, coinciding with relatively high temperatures (>16°C), low nitrogen:phosphorus ratios (N:P < 7.2), and a large contribution of ammonium (>75%) to the total dissolved inorganic nitrogen available. Furthermore, nutrient amendment experiments showed that BNF is detectable when phytoplankton biomass and productivity are nitrogen limited. Seasonally recurrent biogeochemical processes driven by hydrography create an ecological niche for nitrogen fixers in this system. During the spring-summer upwelling, nondiazotroph autotrophs consume nitrate and produce organic matter inside the bays. Thereafter, the combined effect of intense remineralization on the shelf and sustained positive circulation within the bays in late summer-early autumn, conveys enhanced ammonium content and excess phosphate into the warm surface layer. The low N:P ratio confers a competitive advantage to diazotrophs since they are not restricted by nitrogen supply. The new nitrogen supply mediated by BNF could extend the productivity period, and may be a key reason why upwelling bays are more productive than upwelled offshore waters.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf018"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931620/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diazotrophs are a diverse group of microorganisms that can fertilize the ocean through biological nitrogen fixation (BNF). Due to the high energetic cost of this process, diazotrophy in nitrogen-replete regions remains enigmatic. We use multidisciplinary observations to propose a novel framework for the ecological niche construction of nitrogen fixers in the upwelling region off NW Iberia-one of the most productive coastal regions in Europe-characterized by weak and intermittent wind-driven upwelling and the presence of bays. The main diazotroph detected (UCYN-A2) was more abundant and active during summer and early autumn, coinciding with relatively high temperatures (>16°C), low nitrogen:phosphorus ratios (N:P < 7.2), and a large contribution of ammonium (>75%) to the total dissolved inorganic nitrogen available. Furthermore, nutrient amendment experiments showed that BNF is detectable when phytoplankton biomass and productivity are nitrogen limited. Seasonally recurrent biogeochemical processes driven by hydrography create an ecological niche for nitrogen fixers in this system. During the spring-summer upwelling, nondiazotroph autotrophs consume nitrate and produce organic matter inside the bays. Thereafter, the combined effect of intense remineralization on the shelf and sustained positive circulation within the bays in late summer-early autumn, conveys enhanced ammonium content and excess phosphate into the warm surface layer. The low N:P ratio confers a competitive advantage to diazotrophs since they are not restricted by nitrogen supply. The new nitrogen supply mediated by BNF could extend the productivity period, and may be a key reason why upwelling bays are more productive than upwelled offshore waters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信