Weiming Yan, Mengting Maggie Yuan, Shi Wang, Patrick O Sorensen, Tao Wen, Yuting Xu, Honglei Wang, Shuo Jiao, Ji Chen, Zhouping Shangguan, Lei Deng, Ziyan Li, Yangquanwei Zhong
{"title":"Microbial community dynamics in the soil-root continuum are linked with plant species turnover during secondary succession.","authors":"Weiming Yan, Mengting Maggie Yuan, Shi Wang, Patrick O Sorensen, Tao Wen, Yuting Xu, Honglei Wang, Shuo Jiao, Ji Chen, Zhouping Shangguan, Lei Deng, Ziyan Li, Yangquanwei Zhong","doi":"10.1093/ismeco/ycaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Grazing exclusion and land abandonment are commonly adopted to restore degraded ecosystems in semiarid and arid regions worldwide. However, the temporal variation in the soil- versus root-associated microbiome over plant species turnover during secondary succession has rarely been quantified. Using the chronosequence restored from fenced grassland and abandoned farmlands on the Loess Plateau of China, we characterized the dynamics of the soil- and root-associated microbiome of host plant with different dominance statuses during secondary succession from 0 to 40 years. Our results revealed that the root microhabitat, the host plant and their interactions were the main contributors to the bacterial community shift (R<sup>2</sup> = 15.5%, 8.1%, and 22.3%, respectively), and plant interspecies replacement had a greater effect on the shift in the root-associated microbial community than intraspecies replacement did during succession. The root-associated bacterial community of pioneer plants was particularly responsive to succession, especially the endosphere community. Endosphere microbial diversity was positively correlated with host plant coverage change, and the diversity and abundance of taxon recruitment into the endosphere of pioneer plants from the surrounding environment decreased as succession progressed. The community assembly processes also indicated that the endosphere microbiota are strongly selected in younger host plants, whereas stochastic processes dominate in aged host plants. Our study provides evidence of the unique response of the root-associated microbiome to the replacement of plant species during secondary succession, and the function of endosphere microbes should be considered when studying plant-microbe feedback.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf012"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Grazing exclusion and land abandonment are commonly adopted to restore degraded ecosystems in semiarid and arid regions worldwide. However, the temporal variation in the soil- versus root-associated microbiome over plant species turnover during secondary succession has rarely been quantified. Using the chronosequence restored from fenced grassland and abandoned farmlands on the Loess Plateau of China, we characterized the dynamics of the soil- and root-associated microbiome of host plant with different dominance statuses during secondary succession from 0 to 40 years. Our results revealed that the root microhabitat, the host plant and their interactions were the main contributors to the bacterial community shift (R2 = 15.5%, 8.1%, and 22.3%, respectively), and plant interspecies replacement had a greater effect on the shift in the root-associated microbial community than intraspecies replacement did during succession. The root-associated bacterial community of pioneer plants was particularly responsive to succession, especially the endosphere community. Endosphere microbial diversity was positively correlated with host plant coverage change, and the diversity and abundance of taxon recruitment into the endosphere of pioneer plants from the surrounding environment decreased as succession progressed. The community assembly processes also indicated that the endosphere microbiota are strongly selected in younger host plants, whereas stochastic processes dominate in aged host plants. Our study provides evidence of the unique response of the root-associated microbiome to the replacement of plant species during secondary succession, and the function of endosphere microbes should be considered when studying plant-microbe feedback.