Addressing Information Asymmetry: Deep Temporal Causality Discovery for Mixed Time Series.

Jiawei Chen, Chunhui Zhao
{"title":"Addressing Information Asymmetry: Deep Temporal Causality Discovery for Mixed Time Series.","authors":"Jiawei Chen, Chunhui Zhao","doi":"10.1109/TPAMI.2025.3553957","DOIUrl":null,"url":null,"abstract":"<p><p>While existing causal discovery methods mostly focus on continuous time series, causal discovery for mixed time series encompassing both continuous variables (CVs) and discrete variables (DVs) is a fundamental yet underexplored problem. Together with nonlinearity and high dimensionality, mixed time series pose significant challenges for causal discovery. This study addresses the aforementioned challenges based on the following recognitions: (1) DVs may originate from latent continuous variables (LCVs) and undergo discretization processes due to measurement limitations, storage requirements, and other reasons. (2) LCVs contain fine-grained information and interact with CVs. By leveraging these interactions, the intrinsic continuity of DVs can be recovered. Thereupon, we propose a generic deep mixed time series temporal causal discovery framework. Our key idea is to adaptively recover LCVs from DVs with the guidance of CVs and perform causal discovery in a unified continuous-valued space. Technically, a new contextual adaptive Gaussian kernel embedding technique is developed for latent continuity recovery by adaptively aggregating temporal contextual information of DVs. Accordingly, two interdependent model training stages are devised for learning the latent continuity recovery with self-supervision and causal structure learning with sparsity-induced optimization. Experimentally, extensive empirical evaluations and in-depth investigations validate the superior performance of our framework. Our code and data are available at https://github.com/chunhuiz/MiTCD.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3553957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While existing causal discovery methods mostly focus on continuous time series, causal discovery for mixed time series encompassing both continuous variables (CVs) and discrete variables (DVs) is a fundamental yet underexplored problem. Together with nonlinearity and high dimensionality, mixed time series pose significant challenges for causal discovery. This study addresses the aforementioned challenges based on the following recognitions: (1) DVs may originate from latent continuous variables (LCVs) and undergo discretization processes due to measurement limitations, storage requirements, and other reasons. (2) LCVs contain fine-grained information and interact with CVs. By leveraging these interactions, the intrinsic continuity of DVs can be recovered. Thereupon, we propose a generic deep mixed time series temporal causal discovery framework. Our key idea is to adaptively recover LCVs from DVs with the guidance of CVs and perform causal discovery in a unified continuous-valued space. Technically, a new contextual adaptive Gaussian kernel embedding technique is developed for latent continuity recovery by adaptively aggregating temporal contextual information of DVs. Accordingly, two interdependent model training stages are devised for learning the latent continuity recovery with self-supervision and causal structure learning with sparsity-induced optimization. Experimentally, extensive empirical evaluations and in-depth investigations validate the superior performance of our framework. Our code and data are available at https://github.com/chunhuiz/MiTCD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信