Electrophysiological characterization of sourced human iPSC-derived motor neurons.

Channels (Austin, Tex.) Pub Date : 2025-12-01 Epub Date: 2025-03-25 DOI:10.1080/19336950.2025.2480713
Bohumila Jurkovicova-Tarabova, Robin N Stringer, Zuzana Sevcikova Tomaskova, Norbert Weiss
{"title":"Electrophysiological characterization of sourced human iPSC-derived motor neurons.","authors":"Bohumila Jurkovicova-Tarabova, Robin N Stringer, Zuzana Sevcikova Tomaskova, Norbert Weiss","doi":"10.1080/19336950.2025.2480713","DOIUrl":null,"url":null,"abstract":"<p><p>Induced pluripotent stem cell (iPSC)-derived motor neurons provide a powerful platform for studying motor neuron diseases. These cells enable human-specific modeling of disease mechanisms and high-throughput drug screening. While commercially available iPSC-derived motor neurons offer a convenient alternative to time-intensive differentiation protocols, their electrophysiological properties and maturation require comprehensive evaluation to validate their utility for research and therapeutic applications. In this study, we characterized the electrophysiological properties of commercially available iPSC-derived motor neurons. Immunofluorescence confirmed the expression of motor neuron-specific biomarkers, indicating successful differentiation and maturation. Electrophysiological recordings revealed stable passive membrane properties, maturation-dependent improvements in action potential kinetics, and progressive increases in repetitive firing. Voltage-clamp analyses confirmed the functional expression of key ion channels, including high- and low-voltage-activated calcium channels, TTX-sensitive and TTX-insensitive sodium channels, and voltage-gated potassium channels. While the neurons exhibited hallmark features of motor neuron physiology, high input resistance, depolarized resting membrane potentials, and limited firing capacity suggest incomplete electrical maturation. Altogether, these findings underscore the potential of commercially available iPSC-derived motor neurons as a practical resource for MND research, while highlighting the need for optimized protocols to support prolonged culture and full maturation.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"19 1","pages":"2480713"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938304/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19336950.2025.2480713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Induced pluripotent stem cell (iPSC)-derived motor neurons provide a powerful platform for studying motor neuron diseases. These cells enable human-specific modeling of disease mechanisms and high-throughput drug screening. While commercially available iPSC-derived motor neurons offer a convenient alternative to time-intensive differentiation protocols, their electrophysiological properties and maturation require comprehensive evaluation to validate their utility for research and therapeutic applications. In this study, we characterized the electrophysiological properties of commercially available iPSC-derived motor neurons. Immunofluorescence confirmed the expression of motor neuron-specific biomarkers, indicating successful differentiation and maturation. Electrophysiological recordings revealed stable passive membrane properties, maturation-dependent improvements in action potential kinetics, and progressive increases in repetitive firing. Voltage-clamp analyses confirmed the functional expression of key ion channels, including high- and low-voltage-activated calcium channels, TTX-sensitive and TTX-insensitive sodium channels, and voltage-gated potassium channels. While the neurons exhibited hallmark features of motor neuron physiology, high input resistance, depolarized resting membrane potentials, and limited firing capacity suggest incomplete electrical maturation. Altogether, these findings underscore the potential of commercially available iPSC-derived motor neurons as a practical resource for MND research, while highlighting the need for optimized protocols to support prolonged culture and full maturation.

诱导多能干细胞(iPSC)衍生的运动神经元为研究运动神经元疾病提供了一个强大的平台。通过这些细胞可以建立特异性人体疾病机制模型,并进行高通量药物筛选。虽然市售的 iPSC 衍生运动神经元为时间密集型分化方案提供了便捷的替代方案,但它们的电生理特性和成熟度需要全面评估,以验证其在研究和治疗应用中的效用。在本研究中,我们鉴定了市售 iPSC 衍生运动神经元的电生理特性。免疫荧光证实了运动神经元特异性生物标记物的表达,表明分化和成熟成功。电生理记录显示了稳定的被动膜特性、成熟依赖性动作电位动力学的改善以及重复性发射的逐渐增加。电压钳分析证实了关键离子通道的功能表达,包括高电压和低电压激活的钙通道、TTX敏感和TTX不敏感的钠通道以及电压门控钾通道。虽然神经元表现出运动神经元生理学的标志性特征,但高输入阻抗、去极化静息膜电位和有限的发射能力表明电成熟不完全。总之,这些发现强调了商业化 iPSC 衍生的运动神经元作为 MND 研究的实用资源的潜力,同时也强调了支持长时间培养和完全成熟的优化方案的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信