High-dimensional mediation analysis reveals the mediating role of physical activity patterns in genetic pathways leading to AD-like brain atrophy.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Hanxiang Xu, Shizhuo Mu, Jingxuan Bao, Christos Davatzikos, Haochang Shou, Li Shen
{"title":"High-dimensional mediation analysis reveals the mediating role of physical activity patterns in genetic pathways leading to AD-like brain atrophy.","authors":"Hanxiang Xu, Shizhuo Mu, Jingxuan Bao, Christos Davatzikos, Haochang Shou, Li Shen","doi":"10.1186/s13040-025-00432-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a complex disorder that affects multiple biological systems including cognition, behavior and physical health. Unfortunately, the pathogenic mechanisms behind AD are not yet clear and the treatment options are still limited. Despite the increasing number of studies examining the pairwise relationships between genetic factors, physical activity (PA), and AD, few have successfully integrated all three domains of data, which may help reveal mechanisms and impact of these genomic and phenomic factors on AD. We use high-dimensional mediation analysis as an integrative framework to study the relationships among genetic factors, PA and AD-like brain atrophy quantified by spatial patterns of brain atrophy.</p><p><strong>Results: </strong>We integrate data from genetics, PA and neuroimaging measures collected from 13,425 UK Biobank samples to unveil the complex relationship among genetic risk factors, behavior and brain signatures in the contexts of aging and AD. Specifically, we used a composite imaging marker, Spatial Pattern of Abnormality for Recognition of Early AD (SPARE-AD) that characterizes AD-like brain atrophy, as an outcome variable to represent AD risk. Through GWAS, we identified single nucleotide polymorphisms (SNPs) that are significantly associated with SPARE-AD as exposure variables. We employed conventional summary statistics and functional principal component analysis to extract patterns of PA as mediators. After constructing these variables, we utilized a high-dimensional mediation analysis method, Bayesian Mediation Analysis (BAMA), to estimate potential mediating pathways between SNPs, multivariate PA signatures and SPARE-AD. BAMA incorporates Bayesian continuous shrinkage prior to select the active mediators from a large pool of candidates. We identified a total of 22 mediation pathways, indicating how genetic variants can influence SPARE-AD by altering physical activity. By comparing the results with those obtained using univariate mediation analysis, we demonstrate the advantages of high-dimensional mediation analysis methods over univariate mediation analysis.</p><p><strong>Conclusion: </strong>Through integrative analysis of multi-omics data, we identified several mediation pathways of physical activity between genetic factors and SPARE-AD. These findings contribute to a better understanding of the pathogenic mechanisms of AD. Moreover, our research demonstrates the potential of the high-dimensional mediation analysis method in revealing the mechanisms of disease.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"24"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00432-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alzheimer's disease (AD) is a complex disorder that affects multiple biological systems including cognition, behavior and physical health. Unfortunately, the pathogenic mechanisms behind AD are not yet clear and the treatment options are still limited. Despite the increasing number of studies examining the pairwise relationships between genetic factors, physical activity (PA), and AD, few have successfully integrated all three domains of data, which may help reveal mechanisms and impact of these genomic and phenomic factors on AD. We use high-dimensional mediation analysis as an integrative framework to study the relationships among genetic factors, PA and AD-like brain atrophy quantified by spatial patterns of brain atrophy.

Results: We integrate data from genetics, PA and neuroimaging measures collected from 13,425 UK Biobank samples to unveil the complex relationship among genetic risk factors, behavior and brain signatures in the contexts of aging and AD. Specifically, we used a composite imaging marker, Spatial Pattern of Abnormality for Recognition of Early AD (SPARE-AD) that characterizes AD-like brain atrophy, as an outcome variable to represent AD risk. Through GWAS, we identified single nucleotide polymorphisms (SNPs) that are significantly associated with SPARE-AD as exposure variables. We employed conventional summary statistics and functional principal component analysis to extract patterns of PA as mediators. After constructing these variables, we utilized a high-dimensional mediation analysis method, Bayesian Mediation Analysis (BAMA), to estimate potential mediating pathways between SNPs, multivariate PA signatures and SPARE-AD. BAMA incorporates Bayesian continuous shrinkage prior to select the active mediators from a large pool of candidates. We identified a total of 22 mediation pathways, indicating how genetic variants can influence SPARE-AD by altering physical activity. By comparing the results with those obtained using univariate mediation analysis, we demonstrate the advantages of high-dimensional mediation analysis methods over univariate mediation analysis.

Conclusion: Through integrative analysis of multi-omics data, we identified several mediation pathways of physical activity between genetic factors and SPARE-AD. These findings contribute to a better understanding of the pathogenic mechanisms of AD. Moreover, our research demonstrates the potential of the high-dimensional mediation analysis method in revealing the mechanisms of disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信