Laser induced forward transfer imaging using deep learning.

Discover applied sciences Pub Date : 2025-01-01 Epub Date: 2025-03-22 DOI:10.1007/s42452-025-06679-x
James A Grant-Jacob, Michalis N Zervas, Ben Mills
{"title":"Laser induced forward transfer imaging using deep learning.","authors":"James A Grant-Jacob, Michalis N Zervas, Ben Mills","doi":"10.1007/s42452-025-06679-x","DOIUrl":null,"url":null,"abstract":"<p><p>A novel approach for improving the accuracy and efficiency of laser-induced forward transfer (LIFT), through the application of deep learning techniques is presented. By training a neural network on a dataset of images of donor and receiver substrates, the appearance of copper droplets deposited onto the receiver was predicted directly from images of the donor. The results of droplet image prediction using LIFT gave an average RMSE of 9.63 compared with the experimental images, with the SSIM ranging from 0.75 to 0.83, reflecting reliable structural similarity across predictions. These findings underscore the model's predictive potential while identifying opportunities for refinement in minimising error. This approach has the potential to transform parameter optimisation for LIFT, as it enables the visualization of the deposited material without the time-consuming requirement of removing the donor from the setup to allow inspection of the receiver. This work therefore represents an important step forward in the development of LIFT as an additive manufacturing technology to create complex 3D structures on the microscale.</p>","PeriodicalId":520292,"journal":{"name":"Discover applied sciences","volume":"7 4","pages":"254"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover applied sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42452-025-06679-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel approach for improving the accuracy and efficiency of laser-induced forward transfer (LIFT), through the application of deep learning techniques is presented. By training a neural network on a dataset of images of donor and receiver substrates, the appearance of copper droplets deposited onto the receiver was predicted directly from images of the donor. The results of droplet image prediction using LIFT gave an average RMSE of 9.63 compared with the experimental images, with the SSIM ranging from 0.75 to 0.83, reflecting reliable structural similarity across predictions. These findings underscore the model's predictive potential while identifying opportunities for refinement in minimising error. This approach has the potential to transform parameter optimisation for LIFT, as it enables the visualization of the deposited material without the time-consuming requirement of removing the donor from the setup to allow inspection of the receiver. This work therefore represents an important step forward in the development of LIFT as an additive manufacturing technology to create complex 3D structures on the microscale.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信