{"title":"Robust Fourier-based slanted-edge method to measure scatter ratio.","authors":"Lisa M Garland, Ian A Cunningham","doi":"10.1002/mp.17765","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patient scatter incident on an x-ray detector reduces radiographic contrast and adds quantum noise, and minimizing scatter is critical in some specialized techniques such as dual-energy and energy-subtraction methods. Existing methods to measure scatter are either labor-intensive (multiple disks) or not appropriate to use in radiography where scatter often exceeds the width of the x-ray beam.</p><p><strong>Purpose: </strong>Develop a method to measure the scatter-to-primary ratio (SPR) that can be used for a wide range of radiographic and mammographic conditions, both with scatter equilibrium (scatter function does not exceed primary-beam width) and without.</p><p><strong>Methods: </strong>Fourier theory is used to show the SPR can be measured from the low-frequency drop (LFD) of the Fourier transform of the derivative of a normalized edge profile. The method was validated both experimentally and by simulation for radiography and mammography under scatter equilibrium and nonequilibrium conditions.</p><p><strong>Results: </strong>The theoretical derivation showed that by normalizing an edge profile with a profile without the edge, scatter equilibrium is not required and the method accommodates a nonuniform primary beam from beam divergence and Heel effect. The method was validated by a simulation study for a range of scatter-LSF widths, primary-beam widths, and image regions of interest used in the analysis. Experimental scatter measurements agreed with a similar edge-method published by Cooper when scatter equilibrium is achieved.</p><p><strong>Conclusions: </strong>A simple and direct method of measuring the SPR obtained with both uniform and nonuniform test phantoms is described. Validated both experimentally and theoretically, it uses the Fourier LFD obtained from a normalized slanted-edge profile and works for a wide range of practical mammographic and radiographic conditions.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Patient scatter incident on an x-ray detector reduces radiographic contrast and adds quantum noise, and minimizing scatter is critical in some specialized techniques such as dual-energy and energy-subtraction methods. Existing methods to measure scatter are either labor-intensive (multiple disks) or not appropriate to use in radiography where scatter often exceeds the width of the x-ray beam.
Purpose: Develop a method to measure the scatter-to-primary ratio (SPR) that can be used for a wide range of radiographic and mammographic conditions, both with scatter equilibrium (scatter function does not exceed primary-beam width) and without.
Methods: Fourier theory is used to show the SPR can be measured from the low-frequency drop (LFD) of the Fourier transform of the derivative of a normalized edge profile. The method was validated both experimentally and by simulation for radiography and mammography under scatter equilibrium and nonequilibrium conditions.
Results: The theoretical derivation showed that by normalizing an edge profile with a profile without the edge, scatter equilibrium is not required and the method accommodates a nonuniform primary beam from beam divergence and Heel effect. The method was validated by a simulation study for a range of scatter-LSF widths, primary-beam widths, and image regions of interest used in the analysis. Experimental scatter measurements agreed with a similar edge-method published by Cooper when scatter equilibrium is achieved.
Conclusions: A simple and direct method of measuring the SPR obtained with both uniform and nonuniform test phantoms is described. Validated both experimentally and theoretically, it uses the Fourier LFD obtained from a normalized slanted-edge profile and works for a wide range of practical mammographic and radiographic conditions.