Avraham S Lukacher, Bethany A O'Hara, Wenqing Yuan, Kaitlin Garabian, Jacob Kaiserman, Evan MacLure, Sheila A Haley, Walter J Atwood
{"title":"The microvascular endothelium of the blood-brain barrier is highly restrictive to JC Polyomavirus neuroinvasion.","authors":"Avraham S Lukacher, Bethany A O'Hara, Wenqing Yuan, Kaitlin Garabian, Jacob Kaiserman, Evan MacLure, Sheila A Haley, Walter J Atwood","doi":"10.1128/spectrum.00282-25","DOIUrl":null,"url":null,"abstract":"<p><p>JC Polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), an often-fatal demyelinating disease. Unfortunately, a diagnosis of PML occurs only after patients have suffered irreversible neuropathologies. The first step in the initiation of PML is viral entry to the brain, but the route and mechanisms responsible for neuroinvasion have not been well established. To gain a better understanding of this, we asked whether purified virus or virus associated with extracellular vesicles (EVs) could penetrate two different cell culture models of the blood-brain barrier. In one model, we used the hCMEC/D3 brain endothelial cell line, and in the other, we used pluripotent stem cells induced to a brain endothelial cell phenotype (iPSC-EC). We found that neither cell type was permissive to viral infection, but the virus bound and was internalized by both in a sialic acid-dependent manner. Despite virus internalization into these cells, very few virions or virus-associated extracellular vesicles (virus-EVs) penetrated the barriers. The small amount of virus or virus-EVs that did pass through either barrier was sufficient to establish infection in human glial cells. Our findings demonstrate that limited amounts of infectious virions and virus-associated EVs can traverse the brain microvascular endothelium and establish infection.IMPORTANCEThe human polyomavirus, JC Polyomavirus (JCPyV), causes a rapidly progressing demyelinating disease in immunocompromised or immunomodulated patients. Demyelinating lesions are often seen surrounding blood vessels in the brain. In this paper, we used two models to recapitulate a minimal blood-brain barrier and found that both were highly restrictive of virus penetration. A small amount of virus succeeded in crossing both barriers and was sufficient to establish infection of human glia. These data have direct implications for mechanisms used by JCPyV to invade the CNS and cause neurological disease.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0028225"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.00282-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
JC Polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), an often-fatal demyelinating disease. Unfortunately, a diagnosis of PML occurs only after patients have suffered irreversible neuropathologies. The first step in the initiation of PML is viral entry to the brain, but the route and mechanisms responsible for neuroinvasion have not been well established. To gain a better understanding of this, we asked whether purified virus or virus associated with extracellular vesicles (EVs) could penetrate two different cell culture models of the blood-brain barrier. In one model, we used the hCMEC/D3 brain endothelial cell line, and in the other, we used pluripotent stem cells induced to a brain endothelial cell phenotype (iPSC-EC). We found that neither cell type was permissive to viral infection, but the virus bound and was internalized by both in a sialic acid-dependent manner. Despite virus internalization into these cells, very few virions or virus-associated extracellular vesicles (virus-EVs) penetrated the barriers. The small amount of virus or virus-EVs that did pass through either barrier was sufficient to establish infection in human glial cells. Our findings demonstrate that limited amounts of infectious virions and virus-associated EVs can traverse the brain microvascular endothelium and establish infection.IMPORTANCEThe human polyomavirus, JC Polyomavirus (JCPyV), causes a rapidly progressing demyelinating disease in immunocompromised or immunomodulated patients. Demyelinating lesions are often seen surrounding blood vessels in the brain. In this paper, we used two models to recapitulate a minimal blood-brain barrier and found that both were highly restrictive of virus penetration. A small amount of virus succeeded in crossing both barriers and was sufficient to establish infection of human glia. These data have direct implications for mechanisms used by JCPyV to invade the CNS and cause neurological disease.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.