Sabina Victoria, Johanna Leyens, Lea Marie Meckes, Georgios Vavouras Syrigos, Gabriela Turk, Michael Schindler
{"title":"CD4+ T cells facilitate replication of primary HIV-1 strains in macrophages and formation of macrophage internal virus-containing compartments.","authors":"Sabina Victoria, Johanna Leyens, Lea Marie Meckes, Georgios Vavouras Syrigos, Gabriela Turk, Michael Schindler","doi":"10.1128/jvi.00182-25","DOIUrl":null,"url":null,"abstract":"<p><p>HIV-1 replication in macrophages is highly variable with internal virus accumulation in so-called virus-containing compartments (VCCs). VCCs represent a reservoir that is shielded from the antiviral immune response. VCC formation has been studied in lab-adapted HIV-1, but it has not been investigated whether primary HIV-1 strains induce VCCs. Furthermore, although macrophages transmit HIV-1 from VCCs to CD4+ T cells, the effect of T cells on VCCs is unknown. We analyzed the ability of primary and lab-adapted HIV-1 to replicate in macrophages, the effect of non-infected CD4+ T cell coculture, and VCC formation. All HIV-1 strains replicated in CD4+ T cells, whereas only lab-adapted HIV-1 replicated efficiently in macrophage monocultures. Coculture with non-infected CD4+ T cells enhanced the replication of primary HIV-1 in macrophages, a process associated with increased VCC formation and dependent on direct cell-to-cell contact. Broadly neutralizing antibodies differentially affected CD4+ T cell-mediated enhancement of HIV-1 replication in macrophages. CD4 antibody treatment of macrophages phenocopied the infection-promoting effect of CD4+ T cell coculture. In conclusion, non-infected CD4+ T cells facilitate primary HIV-1 replication in macrophages, and the induction of VCCs appears to be a proxy for this phenotype. VCC formation and HIV-1 replication in macrophages are promoted by non-infected CD4+ T cells in a CD4- and GP120-dependent manner. Our findings highlight the critical role of T cell-macrophage interaction in HIV-1 replication dynamics and VCC formation and call for strategies to interfere with VCCs in order to target the HIV-1 reservoir in macrophages.IMPORTANCEHere, we focus on the intimate interplay between HIV-1-infected macrophages and CD4+ T cells. Specifically, we analyzed whether primary HIV-1 strains induce virus-containing compartments (VCCs) within macrophages, which are thought to serve as viral sanctuaries and macrophage reservoirs. Notably, primary HIV-1 strains were unable to replicate in macrophages and induce VCCs unless they were cocultured with non-infected CD4+ T cells, leading to enhanced VCC formation and viral replication. This suggests an essential role for non-infected CD4+ T cells in facilitating primary HIV-1 replication in macrophages. Our data highlight the importance of not only addressing the latent HIV-1 T cell reservoir but also targeting VCC formation in macrophages to achieve the ultimate goal of functional HIV-1 cure.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0018225"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00182-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
HIV-1 replication in macrophages is highly variable with internal virus accumulation in so-called virus-containing compartments (VCCs). VCCs represent a reservoir that is shielded from the antiviral immune response. VCC formation has been studied in lab-adapted HIV-1, but it has not been investigated whether primary HIV-1 strains induce VCCs. Furthermore, although macrophages transmit HIV-1 from VCCs to CD4+ T cells, the effect of T cells on VCCs is unknown. We analyzed the ability of primary and lab-adapted HIV-1 to replicate in macrophages, the effect of non-infected CD4+ T cell coculture, and VCC formation. All HIV-1 strains replicated in CD4+ T cells, whereas only lab-adapted HIV-1 replicated efficiently in macrophage monocultures. Coculture with non-infected CD4+ T cells enhanced the replication of primary HIV-1 in macrophages, a process associated with increased VCC formation and dependent on direct cell-to-cell contact. Broadly neutralizing antibodies differentially affected CD4+ T cell-mediated enhancement of HIV-1 replication in macrophages. CD4 antibody treatment of macrophages phenocopied the infection-promoting effect of CD4+ T cell coculture. In conclusion, non-infected CD4+ T cells facilitate primary HIV-1 replication in macrophages, and the induction of VCCs appears to be a proxy for this phenotype. VCC formation and HIV-1 replication in macrophages are promoted by non-infected CD4+ T cells in a CD4- and GP120-dependent manner. Our findings highlight the critical role of T cell-macrophage interaction in HIV-1 replication dynamics and VCC formation and call for strategies to interfere with VCCs in order to target the HIV-1 reservoir in macrophages.IMPORTANCEHere, we focus on the intimate interplay between HIV-1-infected macrophages and CD4+ T cells. Specifically, we analyzed whether primary HIV-1 strains induce virus-containing compartments (VCCs) within macrophages, which are thought to serve as viral sanctuaries and macrophage reservoirs. Notably, primary HIV-1 strains were unable to replicate in macrophages and induce VCCs unless they were cocultured with non-infected CD4+ T cells, leading to enhanced VCC formation and viral replication. This suggests an essential role for non-infected CD4+ T cells in facilitating primary HIV-1 replication in macrophages. Our data highlight the importance of not only addressing the latent HIV-1 T cell reservoir but also targeting VCC formation in macrophages to achieve the ultimate goal of functional HIV-1 cure.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.