Hongxia Yan, Yue Gao, Yuanmei Zhu, Huihui Chong, Yani Gong, Yue Chen, Li Li, Bin Su, Yuxian He
{"title":"Addition of a short HIV-1 fusion-inhibitory peptide to PRO 140 antibody dramatically increases its antiviral breadth and potency.","authors":"Hongxia Yan, Yue Gao, Yuanmei Zhu, Huihui Chong, Yani Gong, Yue Chen, Li Li, Bin Su, Yuxian He","doi":"10.1128/jvi.02018-24","DOIUrl":null,"url":null,"abstract":"<p><p>PRO 140, a humanized anti-HIV monoclonal antibody targeting the cell coreceptor CCR5, is currently under clinical trials, but it only affects CCR5-tropic viruses. In this study, we have engineered two tandem fusion proteins (2P23-PRO140SC and 2P23-PRO140-Fc) with bifunctional activity by adding short fusion-inhibitory peptide 2P23 to the single-chain fragment variable (scFv) of PRO 140 (PRO140SC) with or without the Fc domain of human IgG4. We first demonstrated that 2P23-PRO140SC and 2P23-PRO140-Fc could efficiently bind to the cell membranes through CCR5 anchoring, which did not affect the expression level of CCR5 on the cell surface. We then verified that the addition of 2P23 peptide to PRO140SC enabled a very potent activity against CXCR4-tropic HIV-1 isolates. As expected, the bispecific fusion proteins exhibited highly potent activities in inhibiting divergent HIV-1 subtypes and viral mutants that were resistant to the fusion inhibitors 2P23 and T20, and they displayed relatively low <i>in vitro</i> cytotoxicity. Furthermore, both the fusion proteins had robust <i>in vivo</i> anti-HIV activities in rats, with 2P23-PRO140-Fc much better than 2P23-PRO140SC. In conclusion, our studies have provided bispecific HIV-1 inhibitors that overcome the drawbacks of PRO 140 antibody and offered novel tools for studying the mechanisms of HIV-1 infection.IMPORTANCEGiven that HIV-1 evolves with high variability and drug resistance, the development of novel antivirals is important. CCR5-directed antibody PRO 140 is currently under clinical trials, but it only inhibits CCR5-tropic HIV-1 isolates. The designed fusion proteins by adding a minimum fusion-inhibitory peptide to PRO 140 enable dramatically increased activities in inhibiting both CCR5-tropic and CXCR4-tropic viruses, thus offering novel antiviral agents with a bispecific functionality that can overcome the drawbacks of PRO 140 antibody.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0201824"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.02018-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PRO 140, a humanized anti-HIV monoclonal antibody targeting the cell coreceptor CCR5, is currently under clinical trials, but it only affects CCR5-tropic viruses. In this study, we have engineered two tandem fusion proteins (2P23-PRO140SC and 2P23-PRO140-Fc) with bifunctional activity by adding short fusion-inhibitory peptide 2P23 to the single-chain fragment variable (scFv) of PRO 140 (PRO140SC) with or without the Fc domain of human IgG4. We first demonstrated that 2P23-PRO140SC and 2P23-PRO140-Fc could efficiently bind to the cell membranes through CCR5 anchoring, which did not affect the expression level of CCR5 on the cell surface. We then verified that the addition of 2P23 peptide to PRO140SC enabled a very potent activity against CXCR4-tropic HIV-1 isolates. As expected, the bispecific fusion proteins exhibited highly potent activities in inhibiting divergent HIV-1 subtypes and viral mutants that were resistant to the fusion inhibitors 2P23 and T20, and they displayed relatively low in vitro cytotoxicity. Furthermore, both the fusion proteins had robust in vivo anti-HIV activities in rats, with 2P23-PRO140-Fc much better than 2P23-PRO140SC. In conclusion, our studies have provided bispecific HIV-1 inhibitors that overcome the drawbacks of PRO 140 antibody and offered novel tools for studying the mechanisms of HIV-1 infection.IMPORTANCEGiven that HIV-1 evolves with high variability and drug resistance, the development of novel antivirals is important. CCR5-directed antibody PRO 140 is currently under clinical trials, but it only inhibits CCR5-tropic HIV-1 isolates. The designed fusion proteins by adding a minimum fusion-inhibitory peptide to PRO 140 enable dramatically increased activities in inhibiting both CCR5-tropic and CXCR4-tropic viruses, thus offering novel antiviral agents with a bispecific functionality that can overcome the drawbacks of PRO 140 antibody.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.