Marina Vabistsevits , Timothy Robinson , Ben Elsworth , Yi Liu , Tom R. Gaunt
{"title":"Integrating Mendelian randomization and literature-mined evidence for breast cancer risk factors","authors":"Marina Vabistsevits , Timothy Robinson , Ben Elsworth , Yi Liu , Tom R. Gaunt","doi":"10.1016/j.jbi.2025.104810","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>An increasing challenge in population health research is efficiently utilising the wealth of data available from multiple sources to investigate disease mechanisms and identify potential intervention targets. The use of biomedical data integration platforms can facilitate evidence triangulation from these different sources, improving confidence in causal relationships of interest. In this work, we aimed to integrate Mendelian randomization (MR) and literature-mined evidence from the EpiGraphDB biomedical knowledge graph to build a comprehensive overview of risk factors for developing breast cancer.</div></div><div><h3>Methods:</h3><div>We utilised MR-EvE (“Everything-vs-Everything”) data to identify candidate risk factors for breast cancer and generate hypotheses for potential mediators of their effect. We also integrated this data with literature-mined relationships, which were extracted by overlapping literature spaces of risk factors and breast cancer. The literature-based discovery (LBD) results were followed up by validation with two-step MR to triangulate the findings from two data sources.</div></div><div><h3>Results:</h3><div>We identified 129 novel and established lifestyle risk factors and molecular traits with evidence of an effect on breast cancer, and made the MR results available in an R/Shiny app (<span><span>https://mvab.shinyapps.io/MR_heatmaps/</span><svg><path></path></svg></span>). We developed an LBD approach for identifying potential mechanistic intermediates of identified risk factors. We present the results of MR and literature evidence integration for two case studies (childhood body size and HDL-cholesterol), demonstrating their complementary functionalities.</div></div><div><h3>Conclusion:</h3><div>We demonstrate that MR-EvE data offers an efficient hypothesis-generating approach for identifying disease risk factors. Moreover, we show that integrating MR evidence with literature-mined data may be used to identify causal intermediates and uncover the mechanisms behind the disease.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"165 ","pages":"Article 104810"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000395","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
An increasing challenge in population health research is efficiently utilising the wealth of data available from multiple sources to investigate disease mechanisms and identify potential intervention targets. The use of biomedical data integration platforms can facilitate evidence triangulation from these different sources, improving confidence in causal relationships of interest. In this work, we aimed to integrate Mendelian randomization (MR) and literature-mined evidence from the EpiGraphDB biomedical knowledge graph to build a comprehensive overview of risk factors for developing breast cancer.
Methods:
We utilised MR-EvE (“Everything-vs-Everything”) data to identify candidate risk factors for breast cancer and generate hypotheses for potential mediators of their effect. We also integrated this data with literature-mined relationships, which were extracted by overlapping literature spaces of risk factors and breast cancer. The literature-based discovery (LBD) results were followed up by validation with two-step MR to triangulate the findings from two data sources.
Results:
We identified 129 novel and established lifestyle risk factors and molecular traits with evidence of an effect on breast cancer, and made the MR results available in an R/Shiny app (https://mvab.shinyapps.io/MR_heatmaps/). We developed an LBD approach for identifying potential mechanistic intermediates of identified risk factors. We present the results of MR and literature evidence integration for two case studies (childhood body size and HDL-cholesterol), demonstrating their complementary functionalities.
Conclusion:
We demonstrate that MR-EvE data offers an efficient hypothesis-generating approach for identifying disease risk factors. Moreover, we show that integrating MR evidence with literature-mined data may be used to identify causal intermediates and uncover the mechanisms behind the disease.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.