{"title":"Alternative splicing of CHI3L1 regulates protein secretion through conformational changes.","authors":"Haesoo Jung, Yong-Eun Kim, Eun-Mi Kim, Kee K Kim","doi":"10.1007/s13258-025-01635-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alternative splicing (AS) plays a crucial role in regulating protein function through the generation of structurally distinct isoforms.</p><p><strong>Objective: </strong>We identify a novel splicing event in Chitinase 3-like 1 (CHI3L1) that modulates its secretion through conformational changes.</p><p><strong>Methods: </strong>CHI3L1 alternative splicing was analyzed using the GTEx dataset. The regulation of CHI3L1 splicing was examined in response to THP-1 and BEAS-2B cells using RT-PCR. Structural modeling of CHI3L1 isoforms was conducted with AlphaFold to predict conformational changes caused by exon 8 exclusion. Protein expression and secretion levels of CHI3L1 isoforms were analyzed by Western blotting.</p><p><strong>Results: </strong>Analysis of the GTEx dataset revealed tissue-specific regulation of CHI3L1 exon 8, with pronounced exclusion in lung tissue. The splicing pattern of CHI3L1 was dynamically regulated during THP-1 macrophage differentiation and by cell density in lung-derived epithelial BEAS-2B cells, suggesting its responsiveness to cellular context. While both full-length and exon 8-excluded CHI3L1 proteins showed cytoplasmic localization, structural analysis using AlphaFold revealed that exon 8 exclusion significantly altered the orientation of the signal peptide. Consequently, exon 8-excluded CHI3L1 exhibited minimal secretion into the culture medium compared to the full-length protein.</p><p><strong>Conclusion: </strong>These findings demonstrate that alternative splicing-mediated exclusion of exon 8 serves as a novel regulatory mechanism controlling CHI3L1 secretion through conformational changes, providing new insights into the post-transcriptional regulation of secreted proteins.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-025-01635-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Alternative splicing (AS) plays a crucial role in regulating protein function through the generation of structurally distinct isoforms.
Objective: We identify a novel splicing event in Chitinase 3-like 1 (CHI3L1) that modulates its secretion through conformational changes.
Methods: CHI3L1 alternative splicing was analyzed using the GTEx dataset. The regulation of CHI3L1 splicing was examined in response to THP-1 and BEAS-2B cells using RT-PCR. Structural modeling of CHI3L1 isoforms was conducted with AlphaFold to predict conformational changes caused by exon 8 exclusion. Protein expression and secretion levels of CHI3L1 isoforms were analyzed by Western blotting.
Results: Analysis of the GTEx dataset revealed tissue-specific regulation of CHI3L1 exon 8, with pronounced exclusion in lung tissue. The splicing pattern of CHI3L1 was dynamically regulated during THP-1 macrophage differentiation and by cell density in lung-derived epithelial BEAS-2B cells, suggesting its responsiveness to cellular context. While both full-length and exon 8-excluded CHI3L1 proteins showed cytoplasmic localization, structural analysis using AlphaFold revealed that exon 8 exclusion significantly altered the orientation of the signal peptide. Consequently, exon 8-excluded CHI3L1 exhibited minimal secretion into the culture medium compared to the full-length protein.
Conclusion: These findings demonstrate that alternative splicing-mediated exclusion of exon 8 serves as a novel regulatory mechanism controlling CHI3L1 secretion through conformational changes, providing new insights into the post-transcriptional regulation of secreted proteins.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.