Molecular architecture of glideosome and nuclear F-actin in Plasmodium falciparum.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vojtěch Pražák, Daven Vasishtan, Kay Grünewald, Ross G Douglas, Josie L Ferreira
{"title":"Molecular architecture of glideosome and nuclear F-actin in Plasmodium falciparum.","authors":"Vojtěch Pražák, Daven Vasishtan, Kay Grünewald, Ross G Douglas, Josie L Ferreira","doi":"10.1038/s44319-025-00415-7","DOIUrl":null,"url":null,"abstract":"<p><p>Actin-based motility is required for the transmission of malaria sporozoites. While this has been shown biochemically, filamentous actin has remained elusive and has not been directly visualised inside the parasite. Using focused ion beam milling and electron cryo-tomography, we studied dynamic actin filaments in unperturbed Plasmodium falciparum cells for the first time. This allowed us to dissect the assembly, path and fate of actin filaments during parasite gliding and determine a complete 3D model of F-actin within sporozoites. We observe micrometre long actin filaments, much longer than expected from in vitro studies. After their assembly at the parasite's apical end, actin filaments continue to grow as they are transported down the cell as part of the glideosome machinery, and are disassembled at the basal end in a rate-limiting step. Large pores in the IMC, constrained to the basal end, may facilitate actin exchange between the pellicular space and cytosol for recycling and maintenance of directional flow. The data also reveal striking actin bundles in the nucleus. Implications for motility and transmission are discussed.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00415-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Actin-based motility is required for the transmission of malaria sporozoites. While this has been shown biochemically, filamentous actin has remained elusive and has not been directly visualised inside the parasite. Using focused ion beam milling and electron cryo-tomography, we studied dynamic actin filaments in unperturbed Plasmodium falciparum cells for the first time. This allowed us to dissect the assembly, path and fate of actin filaments during parasite gliding and determine a complete 3D model of F-actin within sporozoites. We observe micrometre long actin filaments, much longer than expected from in vitro studies. After their assembly at the parasite's apical end, actin filaments continue to grow as they are transported down the cell as part of the glideosome machinery, and are disassembled at the basal end in a rate-limiting step. Large pores in the IMC, constrained to the basal end, may facilitate actin exchange between the pellicular space and cytosol for recycling and maintenance of directional flow. The data also reveal striking actin bundles in the nucleus. Implications for motility and transmission are discussed.

恶性疟原虫滑体和核f -肌动蛋白的分子结构。
以肌动蛋白为基础的运动是疟疾孢子虫传播所必需的。虽然这已经在生物化学上得到了证明,但丝状肌动蛋白仍然是难以捉摸的,而且还没有在寄生虫体内直接观察到。利用聚焦离子束铣削和电子冷冻断层扫描技术,首次研究了未受干扰的恶性疟原虫细胞中的动态肌动蛋白丝。这使我们能够在寄生虫滑翔过程中解剖肌动蛋白丝的组装,路径和命运,并确定孢子内f -肌动蛋白的完整3D模型。我们观察到微米长的肌动蛋白细丝,比体外研究预期的要长得多。肌动蛋白丝在寄生虫的顶端组装完毕后,作为滑翔体机械的一部分被运输到细胞中,并在基端以一个限速步骤被分解。IMC上的大孔隙被限制在基端,可能促进肌动蛋白在膜空间和细胞质之间的交换,以循环和维持定向流动。数据还揭示了细胞核中引人注目的肌动蛋白束。讨论了对运动和传播的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信