Ruofei Li, Yushan Tang, Haiyue Wang, Pengyan Hu, Liang Yu, Cheng Lv, Yu Zhang, A Martin Gerdes, Yibo Wang
{"title":"Local DIO2 Elevation Is an Adaption in Malformed Cerebrovasculature.","authors":"Ruofei Li, Yushan Tang, Haiyue Wang, Pengyan Hu, Liang Yu, Cheng Lv, Yu Zhang, A Martin Gerdes, Yibo Wang","doi":"10.1161/CIRCRESAHA.124.325857","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cerebrovascular malformations are a pivotal cause of hemorrhage and neurological disability alongside lacking effective medication. Thyroid hormones (THs), including thyroxine and triiodothyronine, are essential for vascular development, yet whether they participate in malformed cerebrovascular pathology remains elusive.</p><p><strong>Methods: </strong>Single-cell transcriptome analysis characterized human cerebral cavernous malformations and brain arteriovenous malformations, 2 typical cerebrovascular malformation diseases. Adeno-associated virus-mediated DIO2 (iodothyronine deiodinase 2; an enzyme that converts thyroxine to active triiodothyronine) overexpression/knockdown or triiodothyronine/methimazole (an antithyroid drug) treatment was applied to mouse models of cerebral cavernous malformations (endothelial-specific <i>Pdcd10</i> knockout mice, <i>Pdcd10</i> KO) and brain arteriovenous malformations (endothelial-specific <i>Kras</i><sup><i>G12D</i></sup> mutant mice, <i>Kras</i><sup><i>G12D</i></sup>) to evaluate the involvement of DIO2 and TH signaling in cerebrovascular malformations.</p><p><strong>Results: </strong>TH signaling was markedly activated in fibroblasts of human cerebral cavernous malformation and arteriovenous malformation single-cell samples, accompanied by elevated DIO2 expression. Similar DIO2 upregulation was observed in cerebrovascular fibroblasts of <i>Pdcd10</i> KO/<i>Kras</i><sup><i>G12D</i></sup> mice and patient brain sections. Exogenous DIO2 or triiodothyronine replenishment effectively reduced brain hemorrhage, excessive ECM (extracellular matrix) remodeling, and vascular leakage in juvenile and adult male and female <i>Pdcd10</i> KO/<i>Kras</i><sup><i>G12D</i></sup> mice. In contrast, DIO2 silencing or TH inhibition deteriorated vascular anomalies. Mechanistically, transcription factor Foxk1 (forkhead box K1) was determined to interact with the <i>DIO2</i> promoter region. The activation of fibroblast PI3K-Akt-mTOR signaling in <i>Pdcd10</i> KO/<i>Kras</i><sup><i>G12D</i></sup> mice triggered Foxk1 nuclear translocation to promote <i>DIO2</i> transcription. Triiodothyronine treatment mitigated inflammatory infiltration, normalized mitochondrial morphology, and restored mitochondrial biogenesis in malformed brain vessels by activating the Pgc1a (peroxisome proliferator-activated receptor gamma coactivator 1-alpha)-Sod2 (superoxide dismutase 2)/Prdx3 (peroxiredoxin 3)/Gpx1 (glutathione peroxidase 1) axis to reduce reactive oxygen species accumulation. We also determined that the vascular repair effects of triiodothyronine were Pgc1a-dependent.</p><p><strong>Conclusions: </strong>We delineate a novel DIO2-mediated adaption in malformed cerebrovasculature and conclude that targeting TH signaling may represent a potential therapy for cerebrovascular disorders.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325857","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cerebrovascular malformations are a pivotal cause of hemorrhage and neurological disability alongside lacking effective medication. Thyroid hormones (THs), including thyroxine and triiodothyronine, are essential for vascular development, yet whether they participate in malformed cerebrovascular pathology remains elusive.
Methods: Single-cell transcriptome analysis characterized human cerebral cavernous malformations and brain arteriovenous malformations, 2 typical cerebrovascular malformation diseases. Adeno-associated virus-mediated DIO2 (iodothyronine deiodinase 2; an enzyme that converts thyroxine to active triiodothyronine) overexpression/knockdown or triiodothyronine/methimazole (an antithyroid drug) treatment was applied to mouse models of cerebral cavernous malformations (endothelial-specific Pdcd10 knockout mice, Pdcd10 KO) and brain arteriovenous malformations (endothelial-specific KrasG12D mutant mice, KrasG12D) to evaluate the involvement of DIO2 and TH signaling in cerebrovascular malformations.
Results: TH signaling was markedly activated in fibroblasts of human cerebral cavernous malformation and arteriovenous malformation single-cell samples, accompanied by elevated DIO2 expression. Similar DIO2 upregulation was observed in cerebrovascular fibroblasts of Pdcd10 KO/KrasG12D mice and patient brain sections. Exogenous DIO2 or triiodothyronine replenishment effectively reduced brain hemorrhage, excessive ECM (extracellular matrix) remodeling, and vascular leakage in juvenile and adult male and female Pdcd10 KO/KrasG12D mice. In contrast, DIO2 silencing or TH inhibition deteriorated vascular anomalies. Mechanistically, transcription factor Foxk1 (forkhead box K1) was determined to interact with the DIO2 promoter region. The activation of fibroblast PI3K-Akt-mTOR signaling in Pdcd10 KO/KrasG12D mice triggered Foxk1 nuclear translocation to promote DIO2 transcription. Triiodothyronine treatment mitigated inflammatory infiltration, normalized mitochondrial morphology, and restored mitochondrial biogenesis in malformed brain vessels by activating the Pgc1a (peroxisome proliferator-activated receptor gamma coactivator 1-alpha)-Sod2 (superoxide dismutase 2)/Prdx3 (peroxiredoxin 3)/Gpx1 (glutathione peroxidase 1) axis to reduce reactive oxygen species accumulation. We also determined that the vascular repair effects of triiodothyronine were Pgc1a-dependent.
Conclusions: We delineate a novel DIO2-mediated adaption in malformed cerebrovasculature and conclude that targeting TH signaling may represent a potential therapy for cerebrovascular disorders.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.