Florian Seigneuret, Sébastien Eymieux, Vanessa Sarabia-Vega, Roxane Lemoine, Julien Burlaud-Gaillard, Pierre Raynal, Christophe Hourioux, Camille Sureau, Philippe Roingeard, Hugues de Rocquigny
{"title":"The HBV large envelope protein initiates virion assembly by recruiting capsids at membrane rich domains related to late endosome.","authors":"Florian Seigneuret, Sébastien Eymieux, Vanessa Sarabia-Vega, Roxane Lemoine, Julien Burlaud-Gaillard, Pierre Raynal, Christophe Hourioux, Camille Sureau, Philippe Roingeard, Hugues de Rocquigny","doi":"10.1007/s00018-025-05574-3","DOIUrl":null,"url":null,"abstract":"<p><p>A crucial step of HBV (Hepatitis B Virus) virion morphogenesis is the envelopment of the nucleocapsid by the viral envelope proteins, which is triggered by an interaction between the HBV core protein and the large HBV envelope protein. To document this protein-protein interaction, we co-expressed core and large HBV envelope (LHBs) in Huh-7 cells and subjected the cells to microscopy examination by Fluorescence Resonance Energy Transfer (FRET) and Transmission Electron Microscopy (TEM). Our results show that the sole expression of the core protein leads to assembly of capsids that remain individually isolated within the whole cell, but particularly within the nucleus. In the presence of LHBs, capsids were observed as large clusters in a membrane rich region peripheral to the nucleus. In this context, core-LHBs complex co-localize with markers of the late endosome/multivesicular bodies, this co-localization being driven by LHBs. These results thus show that LHBs binds to the core proteins when preassembled into capsid, at membranes of the late endosome, where the inner capsid and the outer envelope meet to assemble a virion.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"128"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05574-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A crucial step of HBV (Hepatitis B Virus) virion morphogenesis is the envelopment of the nucleocapsid by the viral envelope proteins, which is triggered by an interaction between the HBV core protein and the large HBV envelope protein. To document this protein-protein interaction, we co-expressed core and large HBV envelope (LHBs) in Huh-7 cells and subjected the cells to microscopy examination by Fluorescence Resonance Energy Transfer (FRET) and Transmission Electron Microscopy (TEM). Our results show that the sole expression of the core protein leads to assembly of capsids that remain individually isolated within the whole cell, but particularly within the nucleus. In the presence of LHBs, capsids were observed as large clusters in a membrane rich region peripheral to the nucleus. In this context, core-LHBs complex co-localize with markers of the late endosome/multivesicular bodies, this co-localization being driven by LHBs. These results thus show that LHBs binds to the core proteins when preassembled into capsid, at membranes of the late endosome, where the inner capsid and the outer envelope meet to assemble a virion.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered