Training stiff neural ordinary differential equations with explicit exponential integration methods.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0251475
Colby Fronk, Linda Petzold
{"title":"Training stiff neural ordinary differential equations with explicit exponential integration methods.","authors":"Colby Fronk, Linda Petzold","doi":"10.1063/5.0251475","DOIUrl":null,"url":null,"abstract":"<p><p>Stiff ordinary differential equations (ODEs) are common in many science and engineering fields, but standard neural ODE approaches struggle to accurately learn these stiff systems, posing a significant barrier to the widespread adoption of neural ODEs. In our earlier work, we addressed this challenge by utilizing single-step implicit methods for solving stiff neural ODEs. While effective, these implicit methods are computationally costly and can be complex to implement. This paper expands on our earlier work by exploring explicit exponential integration methods as a more efficient alternative. We evaluate the potential of these explicit methods to handle stiff dynamics in neural ODEs, aiming to enhance their applicability to a broader range of scientific and engineering problems. We found the integrating factor Euler (IF Euler) method to excel in stability and efficiency. While implicit schemes failed to train the stiff van der Pol oscillator, the IF Euler method succeeded, even with large step sizes. However, IF Euler's first-order accuracy limits its use, leaving the development of higher-order methods for stiff neural ODEs an open research problem.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0251475","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Stiff ordinary differential equations (ODEs) are common in many science and engineering fields, but standard neural ODE approaches struggle to accurately learn these stiff systems, posing a significant barrier to the widespread adoption of neural ODEs. In our earlier work, we addressed this challenge by utilizing single-step implicit methods for solving stiff neural ODEs. While effective, these implicit methods are computationally costly and can be complex to implement. This paper expands on our earlier work by exploring explicit exponential integration methods as a more efficient alternative. We evaluate the potential of these explicit methods to handle stiff dynamics in neural ODEs, aiming to enhance their applicability to a broader range of scientific and engineering problems. We found the integrating factor Euler (IF Euler) method to excel in stability and efficiency. While implicit schemes failed to train the stiff van der Pol oscillator, the IF Euler method succeeded, even with large step sizes. However, IF Euler's first-order accuracy limits its use, leaving the development of higher-order methods for stiff neural ODEs an open research problem.

用显式指数积分法训练刚性神经常微分方程。
刚性常微分方程(ODE)在许多科学和工程领域都很常见,但标准的神经ODE方法难以准确地学习这些刚性系统,这对神经ODE的广泛采用构成了重大障碍。在我们早期的工作中,我们通过使用单步隐式方法来解决刚性神经ode来解决这一挑战。虽然有效,但这些隐式方法的计算成本很高,实现起来也很复杂。本文通过探索显式指数积分方法作为一种更有效的替代方法来扩展我们早期的工作。我们评估了这些显式方法在神经ode中处理刚性动力学的潜力,旨在提高它们在更广泛的科学和工程问题中的适用性。我们发现积分因子欧拉(IF Euler)方法在稳定性和效率方面具有优势。虽然隐式方法无法训练僵硬的范德波尔振荡器,但中频欧拉方法即使在较大的步长下也成功了。然而,IF欧拉的一阶精度限制了它的使用,使得硬神经ode的高阶方法的发展成为一个开放的研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信