Tetraspanin CD37 regulates platelet hyperreactivity and thrombosis.

IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Marcin A Sowa, Carmen Hannemann, Ivan Pinos Cabezas, Elissa Ferreira, Bharti Biwas, Min Dai, Emma M Corr, Macintosh G Cornwell, Kamelia Drenkova, Angela H Lee, Tanya Spruill, Harmony R Reynolds, Judith Hochman, Kelly V Ruggles, Robert A Campbell, Coen van Solingen, Mark D Wright, Kathryn J Moore, Jeffrey S Berger, Tessa J Barrett
{"title":"Tetraspanin CD37 regulates platelet hyperreactivity and thrombosis.","authors":"Marcin A Sowa, Carmen Hannemann, Ivan Pinos Cabezas, Elissa Ferreira, Bharti Biwas, Min Dai, Emma M Corr, Macintosh G Cornwell, Kamelia Drenkova, Angela H Lee, Tanya Spruill, Harmony R Reynolds, Judith Hochman, Kelly V Ruggles, Robert A Campbell, Coen van Solingen, Mark D Wright, Kathryn J Moore, Jeffrey S Berger, Tessa J Barrett","doi":"10.1093/cvr/cvaf051","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To investigate how psychosocial stress contributes to accelerated thrombosis, focusing on platelet activation and hyperreactivity. The specific objective was to identify novel platelet regulators involved in stress-mediated thrombosis, with a particular emphasis on the tetraspanin CD37.</p><p><strong>Methods and results: </strong>To explore how stress contributes to platelet hyperreactivity, platelets were isolated from (1) mice that experienced chronic variable stress and stress-free controls (n=8/group) and (2) human subjects with self-reported high and no stress levels (n=18/group), followed by RNA-sequencing. By comparing mutually expressed transcripts, a subset of genes differentially expressed following psychosocial stress was identified in both human and mouse platelets. In both mice and humans, platelet CD37 positively associates with platelet aggregation responses that underlie thrombosis, with Cd37-/- platelets exhibiting impaired integrin αIIbβ3 signaling, characterized by reduced platelet fibrinogen spreading and decreased agonist-induced αIIbβ3 activation. Consistent with a role for CD37 in regulating platelet activation responses, chimeric mice that received Cd37-/- bone marrow experienced a significantly increased time to vessel occlusion in the carotid artery FeCl3 model compared to mice reconstituted with wild-type bone marrow. CD37 deficiency did not alter hemostasis, as platelet count, coagulation metrics, prothrombin time, and partial thromboplastin time did not differ in Cd37-/- mice relative to wild-type mice. Consistent with this, bleeding time did not differ between wild-type and Cd37-/- mice following tail tip transection.</p><p><strong>Conclusions: </strong>This study provides new insights into the platelet-associated mechanisms underlying stress-mediated thrombosis. Identifying CD37 as a novel regulator of platelet activation responses offers potential therapeutic targets for reducing the thrombotic risk associated with psychosocial stress. The findings also contribute to understanding how psychosocial stress accelerates thrombotic events and underscore the importance of platelet activation in this process.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvaf051","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To investigate how psychosocial stress contributes to accelerated thrombosis, focusing on platelet activation and hyperreactivity. The specific objective was to identify novel platelet regulators involved in stress-mediated thrombosis, with a particular emphasis on the tetraspanin CD37.

Methods and results: To explore how stress contributes to platelet hyperreactivity, platelets were isolated from (1) mice that experienced chronic variable stress and stress-free controls (n=8/group) and (2) human subjects with self-reported high and no stress levels (n=18/group), followed by RNA-sequencing. By comparing mutually expressed transcripts, a subset of genes differentially expressed following psychosocial stress was identified in both human and mouse platelets. In both mice and humans, platelet CD37 positively associates with platelet aggregation responses that underlie thrombosis, with Cd37-/- platelets exhibiting impaired integrin αIIbβ3 signaling, characterized by reduced platelet fibrinogen spreading and decreased agonist-induced αIIbβ3 activation. Consistent with a role for CD37 in regulating platelet activation responses, chimeric mice that received Cd37-/- bone marrow experienced a significantly increased time to vessel occlusion in the carotid artery FeCl3 model compared to mice reconstituted with wild-type bone marrow. CD37 deficiency did not alter hemostasis, as platelet count, coagulation metrics, prothrombin time, and partial thromboplastin time did not differ in Cd37-/- mice relative to wild-type mice. Consistent with this, bleeding time did not differ between wild-type and Cd37-/- mice following tail tip transection.

Conclusions: This study provides new insights into the platelet-associated mechanisms underlying stress-mediated thrombosis. Identifying CD37 as a novel regulator of platelet activation responses offers potential therapeutic targets for reducing the thrombotic risk associated with psychosocial stress. The findings also contribute to understanding how psychosocial stress accelerates thrombotic events and underscore the importance of platelet activation in this process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信