Jilong Bian, Hao Lu, Limin Wei, Yang Li, Guohua Wang
{"title":"Relational similarity-based graph contrastive learning for DTI prediction.","authors":"Jilong Bian, Hao Lu, Limin Wei, Yang Li, Guohua Wang","doi":"10.1093/bib/bbaf122","DOIUrl":null,"url":null,"abstract":"<p><p>As part of the drug repurposing process, it is imperative to predict the interactions between drugs and target proteins in an accurate and efficient manner. With the introduction of contrastive learning into drug-target prediction, the accuracy of drug repurposing will be further improved. However, a large part of DTI prediction methods based on deep learning either focus only on the structural features of proteins and drugs extracted using GNN or CNN, or focus only on their relational features extracted using heterogeneous graph neural networks on a DTI heterogeneous graph. Since the structural and relational features of proteins and drugs describe their attribute information from different perspectives, their combination can improve DTI prediction performance. We propose a relational similarity-based graph contrastive learning for DTI prediction (RSGCL-DTI), which combines the structural and relational features of drugs and proteins to enhance the accuracy of DTI predictions. In our proposed method, the inter-protein relational features and inter-drug relational features are extracted from the heterogeneous drug-protein interaction network through graph contrastive learning, respectively. The results demonstrate that combining the relational features obtained by graph contrastive learning with the structural ones extracted by D-MPNN and CNN enhances feature representation ability, thereby improving DTI prediction performance. Our proposed RSGCL-DTI outperforms eight SOTA baseline models on the four benchmark datasets, performs well on the imbalanced dataset, and also shows excellent generalization ability on unseen drug-protein pairs.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf122","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
As part of the drug repurposing process, it is imperative to predict the interactions between drugs and target proteins in an accurate and efficient manner. With the introduction of contrastive learning into drug-target prediction, the accuracy of drug repurposing will be further improved. However, a large part of DTI prediction methods based on deep learning either focus only on the structural features of proteins and drugs extracted using GNN or CNN, or focus only on their relational features extracted using heterogeneous graph neural networks on a DTI heterogeneous graph. Since the structural and relational features of proteins and drugs describe their attribute information from different perspectives, their combination can improve DTI prediction performance. We propose a relational similarity-based graph contrastive learning for DTI prediction (RSGCL-DTI), which combines the structural and relational features of drugs and proteins to enhance the accuracy of DTI predictions. In our proposed method, the inter-protein relational features and inter-drug relational features are extracted from the heterogeneous drug-protein interaction network through graph contrastive learning, respectively. The results demonstrate that combining the relational features obtained by graph contrastive learning with the structural ones extracted by D-MPNN and CNN enhances feature representation ability, thereby improving DTI prediction performance. Our proposed RSGCL-DTI outperforms eight SOTA baseline models on the four benchmark datasets, performs well on the imbalanced dataset, and also shows excellent generalization ability on unseen drug-protein pairs.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.