Relational similarity-based graph contrastive learning for DTI prediction.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jilong Bian, Hao Lu, Limin Wei, Yang Li, Guohua Wang
{"title":"Relational similarity-based graph contrastive learning for DTI prediction.","authors":"Jilong Bian, Hao Lu, Limin Wei, Yang Li, Guohua Wang","doi":"10.1093/bib/bbaf122","DOIUrl":null,"url":null,"abstract":"<p><p>As part of the drug repurposing process, it is imperative to predict the interactions between drugs and target proteins in an accurate and efficient manner. With the introduction of contrastive learning into drug-target prediction, the accuracy of drug repurposing will be further improved. However, a large part of DTI prediction methods based on deep learning either focus only on the structural features of proteins and drugs extracted using GNN or CNN, or focus only on their relational features extracted using heterogeneous graph neural networks on a DTI heterogeneous graph. Since the structural and relational features of proteins and drugs describe their attribute information from different perspectives, their combination can improve DTI prediction performance. We propose a relational similarity-based graph contrastive learning for DTI prediction (RSGCL-DTI), which combines the structural and relational features of drugs and proteins to enhance the accuracy of DTI predictions. In our proposed method, the inter-protein relational features and inter-drug relational features are extracted from the heterogeneous drug-protein interaction network through graph contrastive learning, respectively. The results demonstrate that combining the relational features obtained by graph contrastive learning with the structural ones extracted by D-MPNN and CNN enhances feature representation ability, thereby improving DTI prediction performance. Our proposed RSGCL-DTI outperforms eight SOTA baseline models on the four benchmark datasets, performs well on the imbalanced dataset, and also shows excellent generalization ability on unseen drug-protein pairs.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf122","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

As part of the drug repurposing process, it is imperative to predict the interactions between drugs and target proteins in an accurate and efficient manner. With the introduction of contrastive learning into drug-target prediction, the accuracy of drug repurposing will be further improved. However, a large part of DTI prediction methods based on deep learning either focus only on the structural features of proteins and drugs extracted using GNN or CNN, or focus only on their relational features extracted using heterogeneous graph neural networks on a DTI heterogeneous graph. Since the structural and relational features of proteins and drugs describe their attribute information from different perspectives, their combination can improve DTI prediction performance. We propose a relational similarity-based graph contrastive learning for DTI prediction (RSGCL-DTI), which combines the structural and relational features of drugs and proteins to enhance the accuracy of DTI predictions. In our proposed method, the inter-protein relational features and inter-drug relational features are extracted from the heterogeneous drug-protein interaction network through graph contrastive learning, respectively. The results demonstrate that combining the relational features obtained by graph contrastive learning with the structural ones extracted by D-MPNN and CNN enhances feature representation ability, thereby improving DTI prediction performance. Our proposed RSGCL-DTI outperforms eight SOTA baseline models on the four benchmark datasets, performs well on the imbalanced dataset, and also shows excellent generalization ability on unseen drug-protein pairs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信