Artificial intelligence and its application in clinical microbiology.

IF 4.2 2区 医学 Q1 INFECTIOUS DISEASES
Assia Mairi, Lamia Hamza, Abdelaziz Touati
{"title":"Artificial intelligence and its application in clinical microbiology.","authors":"Assia Mairi, Lamia Hamza, Abdelaziz Touati","doi":"10.1080/14787210.2025.2484284","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Traditional microbiological diagnostics face challenges in pathogen identification speed and antimicrobial resistance (AMR) evaluation. Artificial intelligence (AI) offers transformative solutions, necessitating a comprehensive review of its applications, advancements, and integration challenges in clinical microbiology.</p><p><strong>Areas covered: </strong>This review examines AI-driven methodologies, including machine learning (ML), deep learning (DL), and convolutional neural networks (CNNs), for enhancing pathogen detection, AMR prediction, and diagnostic imaging. Applications in virology (e.g. COVID-19 RT-PCR optimization), parasitology (e.g. malaria detection), and bacteriology (e.g. automated colony counting) are analyzed. A literature search was conducted using PubMed, Scopus, and Web of Science (2018-2024), prioritizing peer-reviewed studies on AI's diagnostic accuracy, workflow efficiency, and clinical validation.</p><p><strong>Expert opinion: </strong>AI significantly improves diagnostic precision and operational efficiency but requires robust validation to address data heterogeneity, model interpretability, and ethical concerns. Future success hinges on interdisciplinary collaboration to develop standardized, equitable AI tools tailored for global healthcare settings. Advancing explainable AI and federated learning frameworks will be critical for bridging current implementation gaps and maximizing AI's potential in combating infectious diseases.</p>","PeriodicalId":12213,"journal":{"name":"Expert Review of Anti-infective Therapy","volume":" ","pages":"1-22"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Anti-infective Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14787210.2025.2484284","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Traditional microbiological diagnostics face challenges in pathogen identification speed and antimicrobial resistance (AMR) evaluation. Artificial intelligence (AI) offers transformative solutions, necessitating a comprehensive review of its applications, advancements, and integration challenges in clinical microbiology.

Areas covered: This review examines AI-driven methodologies, including machine learning (ML), deep learning (DL), and convolutional neural networks (CNNs), for enhancing pathogen detection, AMR prediction, and diagnostic imaging. Applications in virology (e.g. COVID-19 RT-PCR optimization), parasitology (e.g. malaria detection), and bacteriology (e.g. automated colony counting) are analyzed. A literature search was conducted using PubMed, Scopus, and Web of Science (2018-2024), prioritizing peer-reviewed studies on AI's diagnostic accuracy, workflow efficiency, and clinical validation.

Expert opinion: AI significantly improves diagnostic precision and operational efficiency but requires robust validation to address data heterogeneity, model interpretability, and ethical concerns. Future success hinges on interdisciplinary collaboration to develop standardized, equitable AI tools tailored for global healthcare settings. Advancing explainable AI and federated learning frameworks will be critical for bridging current implementation gaps and maximizing AI's potential in combating infectious diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
66
审稿时长
4-8 weeks
期刊介绍: Expert Review of Anti-Infective Therapy (ISSN 1478-7210) provides expert reviews on therapeutics and diagnostics in the treatment of infectious disease. Coverage includes antibiotics, drug resistance, drug therapy, infectious disease medicine, antibacterial, antimicrobial, antifungal and antiviral approaches, and diagnostic tests.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信