{"title":"PCLSurv: a prototypical contrastive learning-based multi-omics data integration model for cancer survival prediction.","authors":"Zhimin Li, Wenlan Chen, Hai Zhong, Cheng Liang","doi":"10.1093/bib/bbaf124","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate cancer survival prediction remains a critical challenge in clinical oncology, largely due to the complex and multi-omics nature of cancer data. Existing methods often struggle to capture the comprehensive range of informative features required for precise predictions. Here, we introduce PCLSurv, an innovative deep learning framework designed for cancer survival prediction using multi-omics data. PCLSurv integrates autoencoders to extract omics-specific features and employs sample-level contrastive learning to identify distinct yet complementary characteristics across data views. Then, features are fused via a bilinear fusion module to construct a unified representation. To further enhance the model's capacity to capture high-level semantic relationships, PCLSurv aligns similar samples with shared prototypes while separating unrelated ones via prototypical contrastive learning. As a result, PCLSurv effectively distinguishes patient groups with varying survival outcomes at different semantic similarity levels, providing a robust framework for stratifying patients based on clinical and molecular features. We conduct extensive experiments on 11 cancer datasets. The comparison results confirm the superior performance of PCLSurv over existing alternatives. The source code of PCLSurv is freely available at https://github.com/LiangSDNULab/PCLSurv.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate cancer survival prediction remains a critical challenge in clinical oncology, largely due to the complex and multi-omics nature of cancer data. Existing methods often struggle to capture the comprehensive range of informative features required for precise predictions. Here, we introduce PCLSurv, an innovative deep learning framework designed for cancer survival prediction using multi-omics data. PCLSurv integrates autoencoders to extract omics-specific features and employs sample-level contrastive learning to identify distinct yet complementary characteristics across data views. Then, features are fused via a bilinear fusion module to construct a unified representation. To further enhance the model's capacity to capture high-level semantic relationships, PCLSurv aligns similar samples with shared prototypes while separating unrelated ones via prototypical contrastive learning. As a result, PCLSurv effectively distinguishes patient groups with varying survival outcomes at different semantic similarity levels, providing a robust framework for stratifying patients based on clinical and molecular features. We conduct extensive experiments on 11 cancer datasets. The comparison results confirm the superior performance of PCLSurv over existing alternatives. The source code of PCLSurv is freely available at https://github.com/LiangSDNULab/PCLSurv.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.