{"title":"DS-MVP: identifying disease-specific pathogenicity of missense variants by pre-training representation.","authors":"Qiufeng Chen, Lijun Quan, Lexin Cao, Bei Zhang, Zhijun Zhang, Liangchen Peng, Junkai Wang, Yelu Jiang, Liangpeng Nie, Geng Li, Tingfang Wu, Qiang Lyu","doi":"10.1093/bib/bbaf119","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately predicting the pathogenicity of missense variants is crucial for improving disease diagnosis and advancing clinical research. However, existing computational methods primarily focus on general pathogenicity predictions, overlooking assessments of disease-specific conditions. In this study, we propose DS-MVP, a method capable of predicting disease-specific pathogenicity of missense variants in human genomes. DS-MVP first leverages a deep learning model pre-trained on a large general pathogenicity dataset to learn rich representation of missense variants. It then fine-tunes these representations with an XGBoost model on smaller datasets for specific diseases. We evaluated the learned representation by testing it on multiple binary pathogenicity datasets and gene-level statistics, demonstrating that DS-MVP outperforms existing state-of-the-art methods, such as MetaRNN and AlphaMissense. Additionally, DS-MVP excels in multi-label and multi-class classification, effectively classifying disease-specific pathogenic missense variants based on disease conditions. It further enhances predictions by fine-tuning the pre-trained model on disease-specific datasets. Finally, we analyzed the contributions of the pre-trained model and various feature types, with gene description corpus features from large language model and genetic feature fusion contributing the most. These results underscore that DS-MVP represents a broader perspective on pathogenicity prediction and holds potential as an effective tool for disease diagnosis.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf119","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting the pathogenicity of missense variants is crucial for improving disease diagnosis and advancing clinical research. However, existing computational methods primarily focus on general pathogenicity predictions, overlooking assessments of disease-specific conditions. In this study, we propose DS-MVP, a method capable of predicting disease-specific pathogenicity of missense variants in human genomes. DS-MVP first leverages a deep learning model pre-trained on a large general pathogenicity dataset to learn rich representation of missense variants. It then fine-tunes these representations with an XGBoost model on smaller datasets for specific diseases. We evaluated the learned representation by testing it on multiple binary pathogenicity datasets and gene-level statistics, demonstrating that DS-MVP outperforms existing state-of-the-art methods, such as MetaRNN and AlphaMissense. Additionally, DS-MVP excels in multi-label and multi-class classification, effectively classifying disease-specific pathogenic missense variants based on disease conditions. It further enhances predictions by fine-tuning the pre-trained model on disease-specific datasets. Finally, we analyzed the contributions of the pre-trained model and various feature types, with gene description corpus features from large language model and genetic feature fusion contributing the most. These results underscore that DS-MVP represents a broader perspective on pathogenicity prediction and holds potential as an effective tool for disease diagnosis.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.