Jiayi Shen, Mengtian Wang, Guodong Pang, Yan Zhang, Jian Zhang, Yuyan Shi, Ji Liu, Cheng Zhan
{"title":"GLP-1 receptor agonist exendin-4 suppresses food intake by inhibiting hindbrain orexigenic NPY neurons.","authors":"Jiayi Shen, Mengtian Wang, Guodong Pang, Yan Zhang, Jian Zhang, Yuyan Shi, Ji Liu, Cheng Zhan","doi":"10.1152/ajpendo.00528.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Peripherally delivered glucagon-like peptide-1 (GLP-1)-based drugs suppress eating through their action in the brain. However, the specific neuronal mechanisms, especially their impacts on the orexigenic circuit, remain largely elusive. Neuropeptide Y (NPY) neurons in the nucleus tractus solitarius (NTS) are newly identified as orexigenic neurons with a potent eating-stimulating effect, but their responses to GLP-1 drugs are unknown. Through ex vivo electrophysiological recordings, we study the impacts of GLP-1 receptor (GLP-1R) agonist exendin-4 on NTS<sup>NPY</sup> neurons. We discovered that the GLP-1R agonist exendin-4 inhibits NTS<sup>NPY</sup> neuronal activity via GABA<sub>b</sub> receptors by augmenting presynaptic GABA release. We also explored the contribution of NTS<sup>NPY</sup> neurons to exendin-4-mediated eating suppression. Interestingly, chemogenetic activation of NTS<sup>NPY</sup> neurons effectively counteracted exendin-4-induced anorexigenic effect. Moreover, chemogenetic inhibition of NTS<sup>NPY</sup> neurons mimicked the eating-suppressing effect of exendin-4. Collectively, our findings highlight a population of orexigenic NTS<sup>NPY</sup> neurons that may be targeted by a GLP-1R agonist to suppress food intake, suggesting that this neuronal population has translational importance as a potential therapeutic target for obesity treatment.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00528.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Peripherally delivered glucagon-like peptide-1 (GLP-1)-based drugs suppress eating through their action in the brain. However, the specific neuronal mechanisms, especially their impacts on the orexigenic circuit, remain largely elusive. Neuropeptide Y (NPY) neurons in the nucleus tractus solitarius (NTS) are newly identified as orexigenic neurons with a potent eating-stimulating effect, but their responses to GLP-1 drugs are unknown. Through ex vivo electrophysiological recordings, we study the impacts of GLP-1 receptor (GLP-1R) agonist exendin-4 on NTSNPY neurons. We discovered that the GLP-1R agonist exendin-4 inhibits NTSNPY neuronal activity via GABAb receptors by augmenting presynaptic GABA release. We also explored the contribution of NTSNPY neurons to exendin-4-mediated eating suppression. Interestingly, chemogenetic activation of NTSNPY neurons effectively counteracted exendin-4-induced anorexigenic effect. Moreover, chemogenetic inhibition of NTSNPY neurons mimicked the eating-suppressing effect of exendin-4. Collectively, our findings highlight a population of orexigenic NTSNPY neurons that may be targeted by a GLP-1R agonist to suppress food intake, suggesting that this neuronal population has translational importance as a potential therapeutic target for obesity treatment.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.