{"title":"HLTF Promotes the Proliferation of Osteosarcoma Cells and Cisplatin Resistance.","authors":"Jing Yu, Cheng Wang","doi":"10.2174/0118715206370231250313174428","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteosarcoma, the most common primary malignant tumor of bone tissue, is characterized by aggressive biological behavior and poor clinical outcomes. The Helicase-Like Transcription Factor (HLTF), a key regulator of DNA damage response and chromatin remodeling processes, has been increasingly recognized for its crucial role in the pathogenesis and progression of various malignancies.</p><p><strong>Objective: </strong>This study aimed to elucidate the regulatory role of HLTF in modulating critical cellular processes, including proliferation, migration, and apoptosis in osteosarcoma cells, while concurrently investigating its potential as a molecular determinant of cisplatin chemoresistance.</p><p><strong>Methods: </strong>The CCK-8 and colony formation assays were carried out to systematically evaluate the impact of HLTF on the proliferative capabilities of osteosarcoma cells. Additionally, the transwell and cell scratch assays were performed to determine the effect of HLTF on the migratory potential of osteosarcoma cells. Furthermore, the CCK8 assay and the subcutaneous tumorigenesis experiment were conducted in nude mice to determine the effect of HLTF on the sensitivity of osteosarcoma cells to cisplatin.</p><p><strong>Results: </strong>Our findings revealed that silencing HLTF expression in osteosarcoma cells led to a marked suppression of both cell proliferation and invasive potential. In contrast, the overexpression of HLTF was found to augment the proliferative and migratory abilities of these cells. Remarkably, downregulating HLTF in osteosarcoma cells heightened cell sensitivity to cisplatin, which was further validated by in vivo experiments.</p><p><strong>Conclusion: </strong>Collectively, our findings strongly indicate that HLTF acts as an oncogene, actively driving the proliferation of osteosarcoma cells and conferring resistance to cisplatin.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206370231250313174428","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Osteosarcoma, the most common primary malignant tumor of bone tissue, is characterized by aggressive biological behavior and poor clinical outcomes. The Helicase-Like Transcription Factor (HLTF), a key regulator of DNA damage response and chromatin remodeling processes, has been increasingly recognized for its crucial role in the pathogenesis and progression of various malignancies.
Objective: This study aimed to elucidate the regulatory role of HLTF in modulating critical cellular processes, including proliferation, migration, and apoptosis in osteosarcoma cells, while concurrently investigating its potential as a molecular determinant of cisplatin chemoresistance.
Methods: The CCK-8 and colony formation assays were carried out to systematically evaluate the impact of HLTF on the proliferative capabilities of osteosarcoma cells. Additionally, the transwell and cell scratch assays were performed to determine the effect of HLTF on the migratory potential of osteosarcoma cells. Furthermore, the CCK8 assay and the subcutaneous tumorigenesis experiment were conducted in nude mice to determine the effect of HLTF on the sensitivity of osteosarcoma cells to cisplatin.
Results: Our findings revealed that silencing HLTF expression in osteosarcoma cells led to a marked suppression of both cell proliferation and invasive potential. In contrast, the overexpression of HLTF was found to augment the proliferative and migratory abilities of these cells. Remarkably, downregulating HLTF in osteosarcoma cells heightened cell sensitivity to cisplatin, which was further validated by in vivo experiments.
Conclusion: Collectively, our findings strongly indicate that HLTF acts as an oncogene, actively driving the proliferation of osteosarcoma cells and conferring resistance to cisplatin.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.