{"title":"Uncovering latent biological function associations through gene set embeddings.","authors":"Yuhang Huang, Fan Zhong, Lei Liu","doi":"10.1186/s12859-025-06100-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The complexity of biological systems has increasingly been unraveled through computational methods, with biological network analysis now focusing on the construction and exploration of well-defined interaction networks. Traditional graph-theoretical approaches have been instrumental in mapping key biological processes using high-confidence interaction data. However, these methods often struggle with incomplete or/and heterogeneous datasets. In this study, we extend beyond conventional bipartite models by integrating attribute-driven knowledge from the Molecular Signatures Database (MSigDB) using the node2vec algorithm.</p><p><strong>Results: </strong>Our approach explores unsupervised biological relationships and uncovers potential associations between genes and biological terms through network connectivity analysis. By embedding both human and mouse data into a shared vector space, we validate our findings cross-species, further strengthening the robustness of our method.</p><p><strong>Conclusions: </strong>This integrative framework reveals both expected and novel biological insights, offering a comprehensive perspective that complements traditional biological network analysis and paves the way for deeper understanding of complex biological processes and diseases.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"90"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06100-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The complexity of biological systems has increasingly been unraveled through computational methods, with biological network analysis now focusing on the construction and exploration of well-defined interaction networks. Traditional graph-theoretical approaches have been instrumental in mapping key biological processes using high-confidence interaction data. However, these methods often struggle with incomplete or/and heterogeneous datasets. In this study, we extend beyond conventional bipartite models by integrating attribute-driven knowledge from the Molecular Signatures Database (MSigDB) using the node2vec algorithm.
Results: Our approach explores unsupervised biological relationships and uncovers potential associations between genes and biological terms through network connectivity analysis. By embedding both human and mouse data into a shared vector space, we validate our findings cross-species, further strengthening the robustness of our method.
Conclusions: This integrative framework reveals both expected and novel biological insights, offering a comprehensive perspective that complements traditional biological network analysis and paves the way for deeper understanding of complex biological processes and diseases.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.