Uncovering latent biological function associations through gene set embeddings.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Yuhang Huang, Fan Zhong, Lei Liu
{"title":"Uncovering latent biological function associations through gene set embeddings.","authors":"Yuhang Huang, Fan Zhong, Lei Liu","doi":"10.1186/s12859-025-06100-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The complexity of biological systems has increasingly been unraveled through computational methods, with biological network analysis now focusing on the construction and exploration of well-defined interaction networks. Traditional graph-theoretical approaches have been instrumental in mapping key biological processes using high-confidence interaction data. However, these methods often struggle with incomplete or/and heterogeneous datasets. In this study, we extend beyond conventional bipartite models by integrating attribute-driven knowledge from the Molecular Signatures Database (MSigDB) using the node2vec algorithm.</p><p><strong>Results: </strong>Our approach explores unsupervised biological relationships and uncovers potential associations between genes and biological terms through network connectivity analysis. By embedding both human and mouse data into a shared vector space, we validate our findings cross-species, further strengthening the robustness of our method.</p><p><strong>Conclusions: </strong>This integrative framework reveals both expected and novel biological insights, offering a comprehensive perspective that complements traditional biological network analysis and paves the way for deeper understanding of complex biological processes and diseases.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"90"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06100-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The complexity of biological systems has increasingly been unraveled through computational methods, with biological network analysis now focusing on the construction and exploration of well-defined interaction networks. Traditional graph-theoretical approaches have been instrumental in mapping key biological processes using high-confidence interaction data. However, these methods often struggle with incomplete or/and heterogeneous datasets. In this study, we extend beyond conventional bipartite models by integrating attribute-driven knowledge from the Molecular Signatures Database (MSigDB) using the node2vec algorithm.

Results: Our approach explores unsupervised biological relationships and uncovers potential associations between genes and biological terms through network connectivity analysis. By embedding both human and mouse data into a shared vector space, we validate our findings cross-species, further strengthening the robustness of our method.

Conclusions: This integrative framework reveals both expected and novel biological insights, offering a comprehensive perspective that complements traditional biological network analysis and paves the way for deeper understanding of complex biological processes and diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信