Discrimination and Translocation of Charged Proteinogenic Amino Acids through a Single-Walled Carbon Nanotube.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-04-03 Epub Date: 2025-03-25 DOI:10.1021/acs.jpcb.4c08692
Yingjun Shen, Mingming Ding
{"title":"Discrimination and Translocation of Charged Proteinogenic Amino Acids through a Single-Walled Carbon Nanotube.","authors":"Yingjun Shen, Mingming Ding","doi":"10.1021/acs.jpcb.4c08692","DOIUrl":null,"url":null,"abstract":"<p><p>Nanopore sensing relies on associating the measured current signals with specific features of the target molecules. The diversity of amino acids presents significant challenges in detecting and sequencing peptides and proteins. The hollow and uniform tubular structure of single-walled carbon nanotubes (SWCNTs) makes them ideal candidates for nanopore sensors. Here, we demonstrate by molecular dynamics simulations the discrimination and translocation of charged proteinogenic amino acids through the nanopore sensor formed by inserting a SWCNT into lipid bilayers. Moreover, our analysis suggests that the current blockade is influenced not only by excluded atomic volume but also by noncovalent interactions between amino acids and SWCNT during similar helical translocation. The presence of noncovalent interactions enhances the understanding of current differences in nanopore translocation of molecules with similar excluded atomic volume. This finding provides new perspectives and applications for the optimal design of SWCNT nanopore sensors.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3502-3513"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08692","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanopore sensing relies on associating the measured current signals with specific features of the target molecules. The diversity of amino acids presents significant challenges in detecting and sequencing peptides and proteins. The hollow and uniform tubular structure of single-walled carbon nanotubes (SWCNTs) makes them ideal candidates for nanopore sensors. Here, we demonstrate by molecular dynamics simulations the discrimination and translocation of charged proteinogenic amino acids through the nanopore sensor formed by inserting a SWCNT into lipid bilayers. Moreover, our analysis suggests that the current blockade is influenced not only by excluded atomic volume but also by noncovalent interactions between amino acids and SWCNT during similar helical translocation. The presence of noncovalent interactions enhances the understanding of current differences in nanopore translocation of molecules with similar excluded atomic volume. This finding provides new perspectives and applications for the optimal design of SWCNT nanopore sensors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信