Deconjugation of Polychlorinated Biphenyl Sulfates to Hydroxylated PCBs by Anaerobically Cultured Mouse and Human Gut Microbiota.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Xueshu Li, Joe J Lim, Cayen Rong, Hans-Joachim Lehmler, Julia Yue Cui
{"title":"Deconjugation of Polychlorinated Biphenyl Sulfates to Hydroxylated PCBs by Anaerobically Cultured Mouse and Human Gut Microbiota.","authors":"Xueshu Li, Joe J Lim, Cayen Rong, Hans-Joachim Lehmler, Julia Yue Cui","doi":"10.1021/acs.chemrestox.5c00016","DOIUrl":null,"url":null,"abstract":"<p><p>The role of the gut microbiome in metabolizing polychlorinated biphenyls (PCBs), toxic environmental contaminants, and their metabolites remains unclear. This study used mouse and human microbiomes in anaerobic cultures to investigate the metabolism of PCB sulfate to hydroxylated PCBs (OH-PCBs). All microbiomes enzymatically hydrolyzed PCB sulfates. Higher chlorinated PCB sulfates were metabolized more readily. Male mouse microbiomes exhibited more PCB sulfate hydrolysis to OH-PCBs than female mouse microbiomes. Human microbiomes metabolized PCB sulfates to a more considerable extent than mouse microbiomes. They also showed variability in PCB sulfate metabolism, depending on the microbial communities. These findings suggest that the microbiome contributes to PCB metabolism.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.5c00016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The role of the gut microbiome in metabolizing polychlorinated biphenyls (PCBs), toxic environmental contaminants, and their metabolites remains unclear. This study used mouse and human microbiomes in anaerobic cultures to investigate the metabolism of PCB sulfate to hydroxylated PCBs (OH-PCBs). All microbiomes enzymatically hydrolyzed PCB sulfates. Higher chlorinated PCB sulfates were metabolized more readily. Male mouse microbiomes exhibited more PCB sulfate hydrolysis to OH-PCBs than female mouse microbiomes. Human microbiomes metabolized PCB sulfates to a more considerable extent than mouse microbiomes. They also showed variability in PCB sulfate metabolism, depending on the microbial communities. These findings suggest that the microbiome contributes to PCB metabolism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信