Is It Worth Running the Hartree-Fock Calculations With Localized Molecular Orbitals Within the Framework of Variational Coupled Cluster Singles Theory?
{"title":"Is It Worth Running the Hartree-Fock Calculations With Localized Molecular Orbitals Within the Framework of Variational Coupled Cluster Singles Theory?","authors":"Ján Šimunek, Jozef Noga","doi":"10.1002/jcc.70075","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Some years ago, we proved that Variational Coupled Cluster Singles (VCCS) theory can be effectively used to solve the independent particle model, which gave rise to a diagonalization-free self-consistent-field approach. The resulting formulation enables a solution with “a priori” localized orbitals. In the current contribution, we have explored this still unexplored possibility. Starting molecular orbitals were either localized using the Pipek-Mezey procedure or via an incomplete Cholesky decomposition of the density matrix. The Hartree-Fock solution was obtained within a VCCS iterative procedure, with the starting localized molecular orbitals used for the creation of the reference and the singly excited determinants. The same localized basis was kept in each iteration. For a series of medium-sized molecules, we have investigated the convergence behavior of the iterative procedure together with the sparsity of the single-excitation amplitude vector and the corresponding density matrix expressed in the localized basis.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70075","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Some years ago, we proved that Variational Coupled Cluster Singles (VCCS) theory can be effectively used to solve the independent particle model, which gave rise to a diagonalization-free self-consistent-field approach. The resulting formulation enables a solution with “a priori” localized orbitals. In the current contribution, we have explored this still unexplored possibility. Starting molecular orbitals were either localized using the Pipek-Mezey procedure or via an incomplete Cholesky decomposition of the density matrix. The Hartree-Fock solution was obtained within a VCCS iterative procedure, with the starting localized molecular orbitals used for the creation of the reference and the singly excited determinants. The same localized basis was kept in each iteration. For a series of medium-sized molecules, we have investigated the convergence behavior of the iterative procedure together with the sparsity of the single-excitation amplitude vector and the corresponding density matrix expressed in the localized basis.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.