The First eDNA-Based Assessment at the World's Most Remote Inhabited Islands: Investigating Marine Vertebrate Diversity at Tristan da Cunha

Q1 Agricultural and Biological Sciences
Megan M. A. Elsmore, Sarah Dalesman, James P. Glass, Jéssica Escobar-Porras, Charles R. Treleven, Sarah Helyar, Paul W. Shaw, Niall J. McKeown
{"title":"The First eDNA-Based Assessment at the World's Most Remote Inhabited Islands: Investigating Marine Vertebrate Diversity at Tristan da Cunha","authors":"Megan M. A. Elsmore,&nbsp;Sarah Dalesman,&nbsp;James P. Glass,&nbsp;Jéssica Escobar-Porras,&nbsp;Charles R. Treleven,&nbsp;Sarah Helyar,&nbsp;Paul W. Shaw,&nbsp;Niall J. McKeown","doi":"10.1002/edn3.70081","DOIUrl":null,"url":null,"abstract":"<p>Oceanic islands are among the most unique and vulnerable ecosystems in the world. Biodiversity monitoring is crucial for the sustainable management of resources; however, the isolation of many islands makes routine assessment challenging. Environmental DNA (eDNA) provides a promising approach to enhance traditional marine biodiversity assessments, reducing the logistical and financial challenges of monitoring. This study employed eDNA to characterize marine vertebrate biodiversity at the world's most remote inhabited islands of Tristan da Cunha. Two 12 s rRNA gene metabarcoding assays targeting marine fish and vertebrates were applied to seawater samples from 18 sites across the archipelago. This multi-assay approach detected 51 Operational Taxonomic Units (OTUs) encompassing 24 families, 28 genera, and 13 species. Comparison with existing results from traditional survey methods (SCUBA, pelagic BRUVS, and deep-water camera drops) and fisheries by-catch showed eDNA to successfully resolve the islands characteristic diversity profile. In addition, eDNA reported rare and vulnerable taxa underrepresented by the traditional surveys and detected species previously unrecorded at the islands. eDNA resolved greater species richness in kelp versus non-kelp habitats. Dominant Tristanian taxa had the highest number of reads, adding to evidence linking reads and abundance. eDNA detection was robust to sampling technique, volume filtered, time between collection, filtration, and sequencing of samples, demonstrating the effectiveness of this technique for use in challenging remote locations. Community composition varied significantly between metabarcoding assays, with unique OTUs detected by each marker, highlighting the importance of assay selection for capturing the full depth and breadth of diversity. 23%–40% of OTUs were resolved to species level, emphasizing the need for the expansion of taxonomic and sequence databases for this region. The study demonstrates the potential of eDNA as a high-resolution tool that can provide new insights into biodiversity around Tristan and can be operationalized to monitor future changes at these isolated islands.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Oceanic islands are among the most unique and vulnerable ecosystems in the world. Biodiversity monitoring is crucial for the sustainable management of resources; however, the isolation of many islands makes routine assessment challenging. Environmental DNA (eDNA) provides a promising approach to enhance traditional marine biodiversity assessments, reducing the logistical and financial challenges of monitoring. This study employed eDNA to characterize marine vertebrate biodiversity at the world's most remote inhabited islands of Tristan da Cunha. Two 12 s rRNA gene metabarcoding assays targeting marine fish and vertebrates were applied to seawater samples from 18 sites across the archipelago. This multi-assay approach detected 51 Operational Taxonomic Units (OTUs) encompassing 24 families, 28 genera, and 13 species. Comparison with existing results from traditional survey methods (SCUBA, pelagic BRUVS, and deep-water camera drops) and fisheries by-catch showed eDNA to successfully resolve the islands characteristic diversity profile. In addition, eDNA reported rare and vulnerable taxa underrepresented by the traditional surveys and detected species previously unrecorded at the islands. eDNA resolved greater species richness in kelp versus non-kelp habitats. Dominant Tristanian taxa had the highest number of reads, adding to evidence linking reads and abundance. eDNA detection was robust to sampling technique, volume filtered, time between collection, filtration, and sequencing of samples, demonstrating the effectiveness of this technique for use in challenging remote locations. Community composition varied significantly between metabarcoding assays, with unique OTUs detected by each marker, highlighting the importance of assay selection for capturing the full depth and breadth of diversity. 23%–40% of OTUs were resolved to species level, emphasizing the need for the expansion of taxonomic and sequence databases for this region. The study demonstrates the potential of eDNA as a high-resolution tool that can provide new insights into biodiversity around Tristan and can be operationalized to monitor future changes at these isolated islands.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信