Analysis and prediction of slurry erosion wear response of silicon carbide reinforced Al2124 composite using Taguchi – artificial neural network approach Analyse und Vorhersage der Schlammerosionsverschleißreaktion von siliziumkarbidverstärktem EN AW-2124-Verbundwerkstoff unter Verwendung des Taguchi-Ansatzes und künstliche neuronale Netzwerke

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Annamalai, B. Anand Ronald, S. Mohamed Ameer Batcha
{"title":"Analysis and prediction of slurry erosion wear response of silicon carbide reinforced Al2124 composite using Taguchi – artificial neural network approach\n Analyse und Vorhersage der Schlammerosionsverschleißreaktion von siliziumkarbidverstärktem EN AW-2124-Verbundwerkstoff unter Verwendung des Taguchi-Ansatzes und künstliche neuronale Netzwerke","authors":"S. Annamalai,&nbsp;B. Anand Ronald,&nbsp;S. Mohamed Ameer Batcha","doi":"10.1002/mawe.202400170","DOIUrl":null,"url":null,"abstract":"<p>Slurry erosion is the prominent failure mechanism in the components exposed to particle entrained slurries. The slurry erosion wear behaviour of powder metallurgically processed Al2124 composite is investigated under slurry conditions with parameters like the impingement angle, impact velocity, slurry concentration, and stand-off distance. Aluminium oxide of 690 μm size is chosen as the erodent and the slurry jet erosion tester is used. The L<sub>16</sub> orthogonal array is used for the experimental design and the most influencing parameters were identified using the analysis of variance (ANOVA) results. Among the parameters studied, slurry concentration and impact velocity are observed to be the most influencing parameters on the erosion rate and surface roughness. Further, the experimental results are compared with those predicted by the regression and artificial neural network (ANN) models. The wear profile analysis of eroded samples shows U and W shape profiles for oblique and normal impact angle conditions respectively. Al2124 composite exhibits ductile erosion behaviour. The material removal mechanisms are analysed by scanning electron microscopy.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 3","pages":"399-418"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400170","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Slurry erosion is the prominent failure mechanism in the components exposed to particle entrained slurries. The slurry erosion wear behaviour of powder metallurgically processed Al2124 composite is investigated under slurry conditions with parameters like the impingement angle, impact velocity, slurry concentration, and stand-off distance. Aluminium oxide of 690 μm size is chosen as the erodent and the slurry jet erosion tester is used. The L16 orthogonal array is used for the experimental design and the most influencing parameters were identified using the analysis of variance (ANOVA) results. Among the parameters studied, slurry concentration and impact velocity are observed to be the most influencing parameters on the erosion rate and surface roughness. Further, the experimental results are compared with those predicted by the regression and artificial neural network (ANN) models. The wear profile analysis of eroded samples shows U and W shape profiles for oblique and normal impact angle conditions respectively. Al2124 composite exhibits ductile erosion behaviour. The material removal mechanisms are analysed by scanning electron microscopy.

Abstract Image

微积分和prediction of slurry侵蚀女装response of矽碳化物reinforced Al2124共和党教科书Taguchi - artificial柏格网络方法分析和预测的Schlammerosionsverschleißreaktion siliziumkarbidverstärktem EN AW-2124-Verbundwerkstoff采用Taguchi-Ansatzes和人工神经元网络
浆料侵蚀是构件暴露于颗粒夹带浆料中的主要破坏机制。研究了粉末冶金处理的Al2124复合材料在料浆条件下的冲蚀磨损行为,考察了冲击角、冲击速度、料浆浓度和离体距离等参数。选用690 μm尺寸的氧化铝作为冲蚀剂,采用浆液射流冲蚀试验装置。实验设计采用L16正交设计,并利用方差分析(ANOVA)结果确定影响最大的参数。在研究的参数中,浆液浓度和冲击速度是对侵蚀速率和表面粗糙度影响最大的参数。并将实验结果与回归模型和人工神经网络模型的预测结果进行了比较。在斜冲击角和正冲击角条件下,冲蚀试样的磨损形貌分析分别显示为U形和W形。Al2124复合材料表现出韧性侵蚀行为。用扫描电镜分析了材料的去除机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信