Effect of Sintering Time on the Corrosion Resistance of PTFE Coatings on AZ31 Mg Alloy

IF 1.1 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING
Di Liu, Qing Xiang, Yu Fang, Yuheng Cui, Qin Zou, Zhen Wang, Daixiong Zhang
{"title":"Effect of Sintering Time on the Corrosion Resistance of PTFE Coatings on AZ31 Mg Alloy","authors":"Di Liu,&nbsp;Qing Xiang,&nbsp;Yu Fang,&nbsp;Yuheng Cui,&nbsp;Qin Zou,&nbsp;Zhen Wang,&nbsp;Daixiong Zhang","doi":"10.1134/S2070205124702472","DOIUrl":null,"url":null,"abstract":"<p>Corrosion is one of the key technical problems impeding the widespread use of magnesium (Mg) and its alloys. Consequently, enhancing the corrosion resistance of Mg alloys is an urgent issue that necessitates immediate attention in their applications. Polytetrafluoroethylene (PTFE), often termed the ‘king of plastics’ because of its exceptional chemical inertness and non-reactivity, forms coatings that effectively shield metal substrates from corrosive environments. This capability substantially reduces corrosion rates, underscoring its considerable potential in corrosion prevention. In this study, PTFE coatings were successfully prepared on Mg–3Al–1Zn (AZ31) alloy sheets through electrophoretic deposition (EPD). The coatings underwent sintering treatments of varying durations, and their corrosion resistance properties were systematically evaluated. The results indicate that sintering duration critically influences the microstructural morphology of the PTFE coatings; extending the sintering duration within a specific range enhances the microstructure’s compactness. Furthermore, the study examined the corrosion behavior of Mg alloys coated with sintered PTFE in a 3.5 wt % NaCl solution, where the corrosion resistance of the sintered PTFE-coated AZ31 was significantly enhanced. Notably, coatings sintered for 14 h exhibited the highest corrosion resistance, with the corrosion current density decreasing from 4.05 × 10<sup>–5</sup> A cm<sup>–2</sup> for the bare AZ31 to 1.20 × 10<sup>–7</sup> A cm<sup>–2</sup> for the sintered PTFE-coated AZ31. Concurrently, the charge transfer resistance increased significantly from 227 to 2.72 × 10<sup>5</sup> Ω cm<sup>2</sup>. The coatings achieved a contact angle exceeding 123° and an adhesion rating of 5B. This offers a novel approach for mitigating corrosion in Mg and its alloys.</p>","PeriodicalId":745,"journal":{"name":"Protection of Metals and Physical Chemistry of Surfaces","volume":"60 6","pages":"1120 - 1135"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection of Metals and Physical Chemistry of Surfaces","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S2070205124702472","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Corrosion is one of the key technical problems impeding the widespread use of magnesium (Mg) and its alloys. Consequently, enhancing the corrosion resistance of Mg alloys is an urgent issue that necessitates immediate attention in their applications. Polytetrafluoroethylene (PTFE), often termed the ‘king of plastics’ because of its exceptional chemical inertness and non-reactivity, forms coatings that effectively shield metal substrates from corrosive environments. This capability substantially reduces corrosion rates, underscoring its considerable potential in corrosion prevention. In this study, PTFE coatings were successfully prepared on Mg–3Al–1Zn (AZ31) alloy sheets through electrophoretic deposition (EPD). The coatings underwent sintering treatments of varying durations, and their corrosion resistance properties were systematically evaluated. The results indicate that sintering duration critically influences the microstructural morphology of the PTFE coatings; extending the sintering duration within a specific range enhances the microstructure’s compactness. Furthermore, the study examined the corrosion behavior of Mg alloys coated with sintered PTFE in a 3.5 wt % NaCl solution, where the corrosion resistance of the sintered PTFE-coated AZ31 was significantly enhanced. Notably, coatings sintered for 14 h exhibited the highest corrosion resistance, with the corrosion current density decreasing from 4.05 × 10–5 A cm–2 for the bare AZ31 to 1.20 × 10–7 A cm–2 for the sintered PTFE-coated AZ31. Concurrently, the charge transfer resistance increased significantly from 227 to 2.72 × 105 Ω cm2. The coatings achieved a contact angle exceeding 123° and an adhesion rating of 5B. This offers a novel approach for mitigating corrosion in Mg and its alloys.

Abstract Image

烧结时间对 AZ31 镁合金聚四氟乙烯涂层耐腐蚀性的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
90
审稿时长
4-8 weeks
期刊介绍: Protection of Metals and Physical Chemistry of Surfaces is an international peer reviewed journal that publishes articles covering all aspects of the physical chemistry of materials and interfaces in various environments. The journal covers all related problems of modern physical chemistry and materials science, including: physicochemical processes at interfaces; adsorption phenomena; complexing from molecular and supramolecular structures at the interfaces to new substances, materials and coatings; nanoscale and nanostructured materials and coatings, composed and dispersed materials; physicochemical problems of corrosion, degradation and protection; investigation methods for surface and interface systems, processes, structures, materials and coatings. No principe restrictions exist related systems, types of processes, methods of control and study. The journal welcomes conceptual, theoretical, experimental, methodological, instrumental, environmental, and all other possible studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信