Development of site- and stereoselective continuous flow deuterium labelling method for carbohydrates using high dispersion effect towards Ru/C of hydrogen flow†
{"title":"Development of site- and stereoselective continuous flow deuterium labelling method for carbohydrates using high dispersion effect towards Ru/C of hydrogen flow†","authors":"Naoya Sakurada, Daiki Sasaki, Manato Ono, Tsuyoshi Yamada, Takashi Ikawa and Hironao Sajiki","doi":"10.1039/D5RE00026B","DOIUrl":null,"url":null,"abstract":"<p >A site- and stereoselective deuterium labelling method for carbohydrates has been developed using a Ru/C catalyst under continuous flow conditions. It has been demonstrated that enhancing the void fraction of the catalyst cartridge leads to improved incorporation, while maintaining high selectivity over 150 h. This scalable, sustainable approach has the potential to reduce energy use, waste and Ru consumption, thus broadening continuous flow applications in organic synthesis.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 4","pages":" 777-781"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00026b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A site- and stereoselective deuterium labelling method for carbohydrates has been developed using a Ru/C catalyst under continuous flow conditions. It has been demonstrated that enhancing the void fraction of the catalyst cartridge leads to improved incorporation, while maintaining high selectivity over 150 h. This scalable, sustainable approach has the potential to reduce energy use, waste and Ru consumption, thus broadening continuous flow applications in organic synthesis.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.