Vapor phase coupling of n-butanol over the mixed catalyst system PdZn/SiO2 + TiO2†

IF 3.1 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Evan C. Wegener
{"title":"Vapor phase coupling of n-butanol over the mixed catalyst system PdZn/SiO2 + TiO2†","authors":"Evan C. Wegener","doi":"10.1039/D4RE00474D","DOIUrl":null,"url":null,"abstract":"<p >Coupling fermentation derived oxygenates <em>via</em> Guerbet-type reactions offers a potential route for producing fuels and chemicals from agricultural feedstocks. In this work the vapor phase reactions of <em>n</em>-butanol over a bimetallic PdZn/SiO<small><sub>2</sub></small> catalyst and physical mixtures of PdZn/SiO<small><sub>2</sub></small> and TiO<small><sub>2</sub></small> were studied. The bimetallic catalyst was highly selective for n-butanol dehydrogenation without the subsequent decarbonylation of butanal which is characteristic of monometallic Pd nanoparticles. When combined with TiO<small><sub>2</sub></small>, a known aldol condensation catalyst, the bifunctional system performs Guerbet-type coupling reactions and produces mixtures of C<small><sub>8</sub></small> oxygenates and higher-order products including C<small><sub>7</sub></small>, C<small><sub>8</sub></small>, and C<small><sub>12</sub></small> hydrocarbons. Results show that within the reaction network PdZn/SiO<small><sub>2</sub></small> performs dehydrogenation/hydrogenation reactions and decarbonylates C<small><sub>8</sub></small> aldehydes to form C<small><sub>7</sub></small> hydrocarbons. TiO<small><sub>2</sub></small> catalyzes aldol condensation and alcohol dehydration reactions responsible for producing C<small><sub>8</sub></small> and C<small><sub>12</sub></small> hydrocarbons. Based on the developed understanding of the function of each catalyst, it was shown that increasing the Brønsted acidity of the TiO<small><sub>2</sub></small> catalyst resulted in an increase in the production of C<small><sub>8</sub></small> hydrocarbons relative to C<small><sub>12</sub></small> hydrocarbons. This work demonstrates the ability of bimetallic Pd-based catalysts that are selective for alcohol dehydrogenation to participate in Guerbet-type coupling reactions and that their combination with an appropriate aldol condensation/dehydration catalyst is an effective strategy to produce higher molecular weight oxygenates and hydrocarbons from renewable resources.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 4","pages":" 906-916"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00474d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Coupling fermentation derived oxygenates via Guerbet-type reactions offers a potential route for producing fuels and chemicals from agricultural feedstocks. In this work the vapor phase reactions of n-butanol over a bimetallic PdZn/SiO2 catalyst and physical mixtures of PdZn/SiO2 and TiO2 were studied. The bimetallic catalyst was highly selective for n-butanol dehydrogenation without the subsequent decarbonylation of butanal which is characteristic of monometallic Pd nanoparticles. When combined with TiO2, a known aldol condensation catalyst, the bifunctional system performs Guerbet-type coupling reactions and produces mixtures of C8 oxygenates and higher-order products including C7, C8, and C12 hydrocarbons. Results show that within the reaction network PdZn/SiO2 performs dehydrogenation/hydrogenation reactions and decarbonylates C8 aldehydes to form C7 hydrocarbons. TiO2 catalyzes aldol condensation and alcohol dehydration reactions responsible for producing C8 and C12 hydrocarbons. Based on the developed understanding of the function of each catalyst, it was shown that increasing the Brønsted acidity of the TiO2 catalyst resulted in an increase in the production of C8 hydrocarbons relative to C12 hydrocarbons. This work demonstrates the ability of bimetallic Pd-based catalysts that are selective for alcohol dehydrogenation to participate in Guerbet-type coupling reactions and that their combination with an appropriate aldol condensation/dehydration catalyst is an effective strategy to produce higher molecular weight oxygenates and hydrocarbons from renewable resources.

Abstract Image

正丁醇在PdZn/SiO2 + TiO2†混合催化剂体系上的气相耦合
通过guerbet型反应耦合发酵衍生的含氧化合物为从农业原料生产燃料和化学品提供了潜在的途径。本文研究了正丁醇在双金属PdZn/SiO2催化剂和PdZn/SiO2与TiO2的物理混合物上的气相反应。双金属催化剂对正丁醇脱氢具有高度选择性,而不会发生丁醇脱羰反应,这是单金属钯纳米颗粒的特征。当与已知的醛醇缩合催化剂TiO2结合时,双功能体系进行guerbet型偶联反应,生成C8氧合物和C7、C8和C12碳氢化合物等高阶产物的混合物。结果表明,PdZn/SiO2在反应网络内发生脱氢/加氢反应,使C8醛脱碳生成C7烃。TiO2催化醛缩反应和醇脱水反应,生成C8和C12碳氢化合物。基于对每种催化剂功能的了解,结果表明,增加TiO2催化剂的Brønsted酸度导致C8烃的产量相对于C12烃的产量增加。这项工作证明了双金属钯基催化剂选择性醇脱氢参与guerbet型偶联反应的能力,以及它们与适当的醛醇缩合/脱水催化剂的结合是一种有效的策略,可以从可再生资源中产生高分子量的氧合物和碳氢化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信