Superior photocatalytic activity of Mn vanadate/reduced graphene oxide magnetic nanocomposite for the oxidation of methylene blue dye under sunlight irradiation†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Fatemeh Rahmatpour and Niaz Monadi
{"title":"Superior photocatalytic activity of Mn vanadate/reduced graphene oxide magnetic nanocomposite for the oxidation of methylene blue dye under sunlight irradiation†","authors":"Fatemeh Rahmatpour and Niaz Monadi","doi":"10.1039/D4RE00314D","DOIUrl":null,"url":null,"abstract":"<p >A magnetic photocatalyst based on reduced graphene oxide and semiconducting MnV<small><sub>2</sub></small>O<small><sub>6</sub></small> (rGO/Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>/MnV<small><sub>2</sub></small>O<small><sub>6</sub></small>) was synthesized by magnetizing the rGO/MnV<small><sub>2</sub></small>O<small><sub>6</sub></small> composite for the efficient degradation of methylene blue (MB), a biodegradation-resistant dye. The prepared magnetic photocatalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Brunauer–Emmett–Teller surface area analysis, Barrett–Joyner–Halenda (BET-BJH) pore analysis and vibrating sample magnetometry (VSM). Its photocatalytic properties and activity were investigated using UV–Vis diffuse reflectance spectroscopy (DRS), fluorescence spectroscopy and inductively-coupled plasma analysis. The synthesized rGO/Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>/MnV<small><sub>2</sub></small>O<small><sub>6</sub></small> nanocomposite exhibited a bandgap of 2.59 eV and a specific surface area of 201.5 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. The optimum photocatalytic conditions for efficient MB photodegradation were determined, and the photocatalytic efficiency was investigated under different light irradiations, including blue and yellow light as well as sunlight. The rGO/Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>/MnV<small><sub>2</sub></small>O<small><sub>6</sub></small> photocatalyst demonstrated excellent MB degradation efficiency, achieving up to 94% under sunlight irradiation. Additionally, the catalyst exhibited remarkable reusability, maintaining 88% degradation efficiency after the 6th cycle, with negligible structural changes. The magnetic properties of the employed photocatalyst played a key role in facilitating their separation and recycling. The kinetics and mechanism of the photodegradation process were evaluated, revealing a pseudo-first-order rate constant of 0.0882 min<small><sup>−1</sup></small> for a hydroxyl radical-based mechanism. The MB degradation was driven by the generation of superoxide (O<small><sub>2</sub></small>˙<small><sup>−</sup></small>) and hydroxyl (˙OH) free radicals during the reaction.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 4","pages":" 876-893"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00314d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A magnetic photocatalyst based on reduced graphene oxide and semiconducting MnV2O6 (rGO/Fe3O4/MnV2O6) was synthesized by magnetizing the rGO/MnV2O6 composite for the efficient degradation of methylene blue (MB), a biodegradation-resistant dye. The prepared magnetic photocatalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Brunauer–Emmett–Teller surface area analysis, Barrett–Joyner–Halenda (BET-BJH) pore analysis and vibrating sample magnetometry (VSM). Its photocatalytic properties and activity were investigated using UV–Vis diffuse reflectance spectroscopy (DRS), fluorescence spectroscopy and inductively-coupled plasma analysis. The synthesized rGO/Fe3O4/MnV2O6 nanocomposite exhibited a bandgap of 2.59 eV and a specific surface area of 201.5 m2 g−1. The optimum photocatalytic conditions for efficient MB photodegradation were determined, and the photocatalytic efficiency was investigated under different light irradiations, including blue and yellow light as well as sunlight. The rGO/Fe3O4/MnV2O6 photocatalyst demonstrated excellent MB degradation efficiency, achieving up to 94% under sunlight irradiation. Additionally, the catalyst exhibited remarkable reusability, maintaining 88% degradation efficiency after the 6th cycle, with negligible structural changes. The magnetic properties of the employed photocatalyst played a key role in facilitating their separation and recycling. The kinetics and mechanism of the photodegradation process were evaluated, revealing a pseudo-first-order rate constant of 0.0882 min−1 for a hydroxyl radical-based mechanism. The MB degradation was driven by the generation of superoxide (O2˙) and hydroxyl (˙OH) free radicals during the reaction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信