Energetical analysis of a method for the scale-up of a microwave flow P-esterification by recirculation†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
József Schindler, István Greiner and György Keglevich
{"title":"Energetical analysis of a method for the scale-up of a microwave flow P-esterification by recirculation†","authors":"József Schindler, István Greiner and György Keglevich","doi":"10.1039/D4RE00622D","DOIUrl":null,"url":null,"abstract":"<p >In a previous communication, we described a flow chemical microwave implementation, where the reaction mixture is circulated. In this way, the given reactor capacity can be increased by up to ten times without any special modifications. It was investigated how the flow rate affects the required number of cycles, and hence the time required to achieve the maximum conversion. The role of the ionic liquid catalyst, and the effect of the increase in the volume on the outcomes were also studied. In this paper, we analyse further the data obtained from an energetic point of view. It was observed that the power of the magnetron of the microwave reactor is consumed by the sets marked by higher flow rates and by increased volumes. The direct esterification of phenyl-<em>H</em>-phosphinic acid with butyl alcohol, which has been previously reported under microwave conditions, was chosen as a model reaction.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 4","pages":" 856-863"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00622d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In a previous communication, we described a flow chemical microwave implementation, where the reaction mixture is circulated. In this way, the given reactor capacity can be increased by up to ten times without any special modifications. It was investigated how the flow rate affects the required number of cycles, and hence the time required to achieve the maximum conversion. The role of the ionic liquid catalyst, and the effect of the increase in the volume on the outcomes were also studied. In this paper, we analyse further the data obtained from an energetic point of view. It was observed that the power of the magnetron of the microwave reactor is consumed by the sets marked by higher flow rates and by increased volumes. The direct esterification of phenyl-H-phosphinic acid with butyl alcohol, which has been previously reported under microwave conditions, was chosen as a model reaction.

Abstract Image

在之前的通信中,我们介绍了一种流动化学微波装置,其中反应混合物是循环流动的。通过这种方式,无需进行任何特殊改动,即可将给定的反应器容量提高 10 倍。我们研究了流速如何影响所需的循环次数,以及实现最大转化率所需的时间。此外,还研究了离子液体催化剂的作用以及增加体积对结果的影响。在本文中,我们将从能量角度进一步分析所获得的数据。我们观察到,微波反应器磁控管的功率消耗在以较高流速和增大体积为标志的装置上。我们选择了之前报道过的在微波条件下苯基-H-膦酸与丁醇的直接酯化反应作为模型反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信